device_context.cc 22.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
qijun 已提交
2 3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
6

Q
qijun 已提交
7 8 9 10 11
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yi Wang 已提交
12
#include "paddle/fluid/platform/device_context.h"
13
#include <set>
14
#include <string>
Y
Yu Yang 已提交
15
#include <unordered_set>
16 17
#include <vector>

Y
Yi Wang 已提交
18
#include "paddle/fluid/memory/memory.h"
19 20
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/framework/rw_lock.h"
21
#include "paddle/fluid/memory/allocation/cuda_device_context_allocator.h"
S
sneaxiy 已提交
22
#include "paddle/fluid/platform/cuda_device_guard.h"
23
#endif
24

25 26
#include "glog/logging.h"

27 28 29 30 31
namespace paddle {
namespace memory {

AllocationPtr Alloc(const platform::DeviceContext& dev_ctx, size_t size) {
  auto place = dev_ctx.GetPlace();
32
  if (size == 0) {
33 34
    return Alloc(place, size);
  }
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55

  if (platform::is_gpu_place(place)) {
#ifdef PADDLE_WITH_CUDA
    auto* default_dev_ctx = static_cast<platform::CUDADeviceContext*>(
        platform::DeviceContextPool::Instance().Get(place));
    auto& desired_dev_ctx =
        static_cast<const platform::CUDADeviceContext&>(dev_ctx);
    if (default_dev_ctx->stream() == desired_dev_ctx.stream()) {
      return Alloc(place, size);
    } else {
      return allocation::CUDADeviceContextAllocatorPool::Instance().Alloc(
          desired_dev_ctx, size);
    }
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Paddle can't use CUDA device since it's not compiled with CUDA,"
        "Please recompile or reinstall Paddle with GPU support."));
#endif
  } else if (platform::is_xpu_place(place)) {
#ifdef PADDLE_WITH_XPU
    // TODO(liuyuhui): Consider xpu stream later
56 57
    return Alloc(place, size);
#else
58 59 60
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Paddle can't use XPU device since it's not compiled with XPU,"
        "Please recompile or reinstall Paddle with XPU support."));
61
#endif
62 63 64
  } else {
    return Alloc(place, size);
  }
65 66 67 68 69
}

}  // namespace memory
}  // namespace paddle

Q
qijun 已提交
70 71 72
namespace paddle {
namespace platform {

73 74 75 76
#ifdef PADDLE_WITH_CUDA
bool allow_tf32_cublas = true;
void SetAllowTF32Cublas(bool active) { allow_tf32_cublas = active; }
bool AllowTF32Cublas() { return allow_tf32_cublas; }
A
AshburnLee 已提交
77 78 79 80

bool allow_tf32_cudnn = true;
void SetAllowTF32Cudnn(bool active) { allow_tf32_cudnn = active; }
bool AllowTF32Cudnn() { return allow_tf32_cudnn; }
81 82
#endif  // PADDLE_WITH_CUDA

D
dzhwinter 已提交
83 84
DeviceContextPool* DeviceContextPool::pool = nullptr;

Y
Yu Yang 已提交
85
platform::DeviceContext* DeviceContextPool::Get(const platform::Place& place) {
D
dzhwinter 已提交
86 87
  auto it = device_contexts_.find(place);
  if (it == device_contexts_.end()) {
G
GaoWei8 已提交
88 89
    PADDLE_THROW(platform::errors::Unimplemented(
        "Place %s is not supported. Please check that your paddle compiles "
90 91
        "with WITH_GPU, WITH_XPU or WITH_ASCEND_CL option or check that "
        "your train process set the correct device id if you use Executor.",
G
GaoWei8 已提交
92
        place));
D
dzhwinter 已提交
93
  }
94
  return it->second.get().get();
D
dzhwinter 已提交
95 96
}

97 98 99 100 101 102 103 104 105
template <typename DevCtx, typename PlaceType>
inline void EmplaceDeviceContext(
    std::map<Place, std::shared_future<std::unique_ptr<DeviceContext>>>*
        map_ptr,
    platform::Place p) {
  using PtrType = std::unique_ptr<DeviceContext>;
  map_ptr->emplace(p, std::async(std::launch::deferred, [=] {
                     // lazy evaluation. i.e., only create device context at
                     // first `Get`
106
                     return PtrType(new DevCtx(BOOST_GET_CONST(PlaceType, p)));
107
                   }));
C
chengduozh 已提交
108 109
}

D
dzhwinter 已提交
110 111
DeviceContextPool::DeviceContextPool(
    const std::vector<platform::Place>& places) {
G
GaoWei8 已提交
112 113 114 115 116
  PADDLE_ENFORCE_GT(
      places.size(), 0,
      platform::errors::InvalidArgument("The number of platform places should "
                                        "be larger than 0. But received %d.",
                                        places.size()));
117
  std::set<Place> set;
Y
Yu Yang 已提交
118 119 120 121 122
  for (auto& p : places) {
    set.insert(p);
  }
  for (auto& p : set) {
    if (platform::is_cpu_place(p)) {
123
#ifdef PADDLE_WITH_MKLDNN
124
      EmplaceDeviceContext<MKLDNNDeviceContext, CPUPlace>(&device_contexts_, p);
125
#else
126
      EmplaceDeviceContext<CPUDeviceContext, CPUPlace>(&device_contexts_, p);
127
#endif
Y
Yu Yang 已提交
128
    } else if (platform::is_gpu_place(p)) {
D
dzhwinter 已提交
129
#ifdef PADDLE_WITH_CUDA
130
      EmplaceDeviceContext<CUDADeviceContext, CUDAPlace>(&device_contexts_, p);
D
dzhwinter 已提交
131
#else
G
GaoWei8 已提交
132 133 134
      PADDLE_THROW(
          platform::errors::Unimplemented("CUDAPlace is not supported. Please "
                                          "re-compile with WITH_GPU option."));
C
chengduoZH 已提交
135 136 137
#endif
    } else if (platform::is_cuda_pinned_place(p)) {
#ifdef PADDLE_WITH_CUDA
138 139
      EmplaceDeviceContext<CUDAPinnedDeviceContext, CUDAPinnedPlace>(
          &device_contexts_, p);
C
chengduoZH 已提交
140
#else
G
GaoWei8 已提交
141
      PADDLE_THROW(platform::errors::Unimplemented(
G
GaoWei8 已提交
142 143
          "CUDAPlace is not supported. Please re-compile with WITH_GPU "
          "option."));
144 145 146 147 148 149 150 151
#endif
    } else if (platform::is_xpu_place(p)) {
#ifdef PADDLE_WITH_XPU
      EmplaceDeviceContext<XPUDeviceContext, XPUPlace>(&device_contexts_, p);
#else
      PADDLE_THROW(
          platform::errors::Unimplemented("XPUPlace is not supported. Please "
                                          "re-compile with WITH_XPU option."));
152 153 154 155 156 157 158 159
#endif
    } else if (platform::is_npu_place(p)) {
#ifdef PADDLE_WITH_ASCEND_CL
      EmplaceDeviceContext<NPUDeviceContext, NPUPlace>(&device_contexts_, p);
#else
      PADDLE_THROW(platform::errors::Unimplemented(
          "NPUPlace is not supported. Please "
          "re-compile with WITH_ASCEND_CL option."));
D
dzhwinter 已提交
160 161 162 163 164
#endif
    }
  }
}

165 166 167 168
CPUDeviceContext::CPUDeviceContext() {
  eigen_device_.reset(new Eigen::DefaultDevice());
}

D
dzhwinter 已提交
169
CPUDeviceContext::CPUDeviceContext(CPUPlace place) : place_(place) {
170 171 172 173 174 175 176
  eigen_device_.reset(new Eigen::DefaultDevice());
}

Eigen::DefaultDevice* CPUDeviceContext::eigen_device() const {
  return eigen_device_.get();
}

D
dzhwinter 已提交
177
Place CPUDeviceContext::GetPlace() const { return place_; }
178

179 180 181
#ifdef PADDLE_WITH_XPU
XPUDeviceContext::XPUDeviceContext() { context_ = xpu::create_context(); }

182 183 184 185 186 187 188 189 190 191
XPUDeviceContext::~XPUDeviceContext() {
  xpu::destroy_context(context_);
  void* l3ptr = nullptr;
  int l3_size = 13.5 * 1024 * 1024;
  xpu_malloc(static_cast<void**>(&l3ptr), l3_size, XPU_MEM_L3);
  if (l3ptr != nullptr) {
    context_->_l3_mgr.set(l3ptr, l3_size);
    std::cout << "set l3 size " << l3_size << std::endl;
  }
}
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207

XPUDeviceContext::XPUDeviceContext(XPUPlace place) : place_(place) {
  int dev_id = -1;
  int ret = xpu_current_device(&dev_id);
  PADDLE_ENFORCE_EQ(ret, XPU_SUCCESS,
                    platform::errors::External(
                        "XPU API return wrong value[%d], please check whether "
                        "Baidu Kunlun Card is properly installed.",
                        ret));
  ret = xpu_set_device(place.device);
  PADDLE_ENFORCE_EQ(ret, XPU_SUCCESS,
                    platform::errors::External(
                        "XPU API return wrong value[%d], please check whether "
                        "Baidu Kunlun Card is properly installed.",
                        ret));
  context_ = xpu::create_context();
208 209 210 211 212 213 214
  void* l3ptr = nullptr;
  int l3_size = 13.5 * 1024 * 1024;
  xpu_malloc(static_cast<void**>(&l3ptr), l3_size, XPU_MEM_L3);
  if (l3ptr != nullptr) {
    context_->_l3_mgr.set(l3ptr, l3_size);
    std::cout << "set l3 size " << l3_size << std::endl;
  }
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
  ret = xpu_set_device(dev_id);
  PADDLE_ENFORCE_EQ(ret, XPU_SUCCESS,
                    platform::errors::External(
                        "XPU API return wrong value[%d], please check whether "
                        "Baidu Kunlun Card is properly installed.",
                        ret));
}

void XPUDeviceContext::Wait() const {
  int ret = xpu_set_device(place_.device);
  PADDLE_ENFORCE_EQ(ret, XPU_SUCCESS,
                    platform::errors::External(
                        "XPU API return wrong value[%d], please check whether "
                        "Baidu Kunlun Card is properly installed.",
                        ret));
  xpu_wait();
}

Place XPUDeviceContext::GetPlace() const { return place_; }

xpu::Context* XPUDeviceContext::x_context() const { return context_; }
#endif

238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
#ifdef PADDLE_WITH_ASCEND_CL
NPUDeviceContext::NPUDeviceContext(NPUPlace place) : place_(place) {
  NPUDeviceGuard guard(place_.device);
  // PADDLE_ENFORCE_NPU_SUCCESS(aclrtCreateContext(&context_, place_.device));
  // NOTE(zhiqiu): Usually, no need to create context explicitly,
  // ACL creates a default context which contains 1 default stream
  // and 1 sync strean after aclrtSetDevice.
  PADDLE_ENFORCE_NPU_SUCCESS(aclrtGetCurrentContext(&context_));
}

NPUDeviceContext::~NPUDeviceContext() {
  // NPUDeviceGuard guard(place_.device);
  // PADDLE_ENFORCE_NPU_SUCCESS(aclrtDestroyContext(context_));
}

void NPUDeviceContext::Wait() const {
  NPUDeviceGuard guard(place_.device);
  PADDLE_ENFORCE_NPU_SUCCESS(aclrtSynchronizeDevice());
}

Place NPUDeviceContext::GetPlace() const { return place_; }

aclrtContext* NPUDeviceContext::context() const {
  return const_cast<aclrtContext*>(&context_);
}
#endif

265
#ifdef PADDLE_WITH_CUDA
266

Q
init  
qijun 已提交
267 268 269 270 271 272 273
class EigenCudaStreamDevice : public Eigen::StreamInterface {
 public:
  EigenCudaStreamDevice() : scratch_(nullptr), semaphore_(nullptr) {
    Eigen::initializeDeviceProp();
  }
  ~EigenCudaStreamDevice() override {}

D
dzhwinter 已提交
274
  void Reinitialize(const cudaStream_t* cuda_stream, CUDAPlace place) {
Q
init  
qijun 已提交
275 276 277 278 279 280 281 282 283 284 285 286
    stream_ = cuda_stream;
    place_ = place;
    device_prop_ = &Eigen::m_deviceProperties[place.device];
  }

  const cudaStream_t& stream() const override { return *stream_; }

  const cudaDeviceProp& deviceProperties() const override {
    return *device_prop_;
  }

  void* allocate(size_t num_bytes) const override {
S
sneaxiy 已提交
287 288 289
    if (UNLIKELY(num_bytes == 0)) {
      return nullptr;
    }
290 291 292
    auto buf = memory::Alloc(place_, num_bytes);
    VLOG(4) << "Eigen allocated at " << buf->ptr() << ", size" << buf->size()
            << " requested " << num_bytes;
293
    void* retv = buf->ptr();
S
sneaxiy 已提交
294 295 296 297
    {
      std::lock_guard<std::mutex> lock(mtx_);
      allocations_.emplace(retv, std::move(buf));
    }
298
    return retv;
Q
init  
qijun 已提交
299 300
  }

S
sneaxiy 已提交
301 302 303 304 305 306
  void deallocate(void* buffer) const override {
    if (LIKELY(buffer)) {
      std::lock_guard<std::mutex> lock(mtx_);
      allocations_.erase(buffer);
    }
  }
Q
init  
qijun 已提交
307 308 309

  void* scratchpad() const override {
    if (scratch_ == NULL) {
Z
Zhang Ting 已提交
310 311 312 313
// windows use an old version of eigen that uses kCudaScratchSize,
// once windows updates eigen to a recent version, the following code
// can use kGpuScratchSize uniformly
#ifdef _WIN32
Q
init  
qijun 已提交
314
      scratch_ = allocate(Eigen::kCudaScratchSize + sizeof(unsigned int));
Z
Zhang Ting 已提交
315 316 317
#else
      scratch_ = allocate(Eigen::kGpuScratchSize + sizeof(unsigned int));
#endif
Q
init  
qijun 已提交
318 319 320 321 322 323
    }
    return scratch_;
  }

  unsigned int* semaphore() const override {
    if (semaphore_ == NULL) {
Z
Zhang Ting 已提交
324
#ifdef _WIN32
Q
init  
qijun 已提交
325 326
      char* scratch =
          static_cast<char*>(scratchpad()) + Eigen::kCudaScratchSize;
Z
Zhang Ting 已提交
327 328 329
#else
      char* scratch = static_cast<char*>(scratchpad()) + Eigen::kGpuScratchSize;
#endif
Q
init  
qijun 已提交
330
      semaphore_ = reinterpret_cast<unsigned int*>(scratch);
331
      PADDLE_ENFORCE_CUDA_SUCCESS(
Q
init  
qijun 已提交
332 333 334 335 336 337
          cudaMemsetAsync(semaphore_, 0, sizeof(unsigned int), *stream_));
    }
    return semaphore_;
  }

 private:
D
dzhwinter 已提交
338
  CUDAPlace place_;
Q
init  
qijun 已提交
339 340
  const cudaStream_t* stream_;         // not owned;
  const cudaDeviceProp* device_prop_;  // not owned;
Q
qijun 已提交
341
  mutable void* scratch_;
Q
init  
qijun 已提交
342
  mutable unsigned int* semaphore_;
S
sneaxiy 已提交
343
  mutable std::mutex mtx_;  // to protect allocations_
Y
Yu Yang 已提交
344
  mutable std::unordered_map<void*, memory::AllocationPtr> allocations_;
Q
init  
qijun 已提交
345 346
};

347 348 349 350 351 352 353 354 355
void CudnnWorkspaceHandle::ReallocWorkspace(size_t required_workspace_bytes) {
  if (required_workspace_bytes <= WorkspaceSize()) {
    return;
  }
  // reset allocation first before re-allocate to save memory
  allocation_.reset();
  allocation_ = memory::Alloc(device_context_, required_workspace_bytes);
}

356 357 358 359 360 361 362 363 364 365 366 367
thread_local std::unordered_map<const CUDADeviceContext*,
                                std::shared_ptr<CUDAContext>>
    CUDADeviceContext::thread_ctx_;
thread_local std::mutex CUDADeviceContext::ctx_mtx_;

void CUDAContext::InitEigenContext() {
  eigen_stream_.reset(new EigenCudaStreamDevice());
  eigen_stream_->Reinitialize(&RawStream(), place_);
  eigen_device_.reset(new Eigen::GpuDevice(eigen_stream_.get()));
}

CUDAContext::CUDAContext(const CUDAPlace& place,
368
                         const stream::Priority& priority) {
369 370 371 372 373 374
  place_ = place;
  CUDADeviceGuard guard(place_.device);
  stream_.reset(new stream::CUDAStream(place, priority));
  InitEigenContext();
  InitCuBlasContext();
  InitCuDNNContext();
G
Guo Sheng 已提交
375
  InitCuSolverContext();
376 377 378 379 380 381
}

CUDAContext::~CUDAContext() {
  CUDADeviceGuard guard(place_.device);
  DestoryCuDNNContext();
  DestoryCuBlasContext();
G
Guo Sheng 已提交
382
  DestoryCuSolverContext();
383 384
}

385
CUDADeviceContext::CUDADeviceContext(CUDAPlace place) : place_(place) {
Y
Yu Yang 已提交
386
  CUDADeviceGuard guard(place_.device);
C
chengduo 已提交
387 388 389
  compute_capability_ = GetCUDAComputeCapability(place_.device);
  multi_process_ = GetCUDAMultiProcessors(place_.device);
  max_threads_per_mp_ = GetCUDAMaxThreadsPerMultiProcessor(place_.device);
390
  max_grid_dim_size_ = GetGpuMaxGridDimSize(place_.device);
391
  max_threads_per_block_ = GetCUDAMaxThreadsPerBlock(place_.device);
392

C
chengduo 已提交
393 394 395
  driver_version_ = GetCUDADriverVersion(place_.device);
  runtime_version_ = GetCUDARuntimeVersion(place_.device);

396
  LOG_FIRST_N(WARNING, 1) << "Please NOTE: device: " << place_.device
397 398 399
                          << ", GPU Compute Capability: "
                          << compute_capability_ / 10 << "."
                          << compute_capability_ % 10
C
chengduo 已提交
400
                          << ", Driver API Version: " << driver_version_ / 1000
401
                          << "." << (driver_version_ % 100) / 10
C
chengduo 已提交
402 403 404
                          << ", Runtime API Version: "
                          << runtime_version_ / 1000 << "."
                          << (runtime_version_ % 100) / 10;
405 406 407
  size_t cudnn_dso_ver = dynload::cudnnGetVersion();
  LOG_FIRST_N(WARNING, 1) << "device: " << place_.device
                          << ", cuDNN Version: " << cudnn_dso_ver / 1000 << "."
408
                          << (cudnn_dso_ver % 1000) / 100 << ".";
S
sneaxiy 已提交
409 410 411

  {
    // Check CUDA/CUDNN version compatiblity
412 413 414 415
    auto local_cuda_version =
        (driver_version_ / 1000) * 10 + (driver_version_ % 100) / 10;
    auto compile_cuda_version =
        (CUDA_VERSION / 1000) * 10 + (CUDA_VERSION % 100) / 10;
S
sneaxiy 已提交
416 417 418 419 420 421 422 423 424 425 426 427
    if (local_cuda_version < compile_cuda_version) {
      LOG_FIRST_N(WARNING, 1)
          << "WARNING: device: " << place_.device
          << ". The installed Paddle is compiled with CUDA "
          << compile_cuda_version / 10 << "." << compile_cuda_version % 10
          << ", but CUDA runtime version in your machine is "
          << local_cuda_version / 10 << "." << local_cuda_version % 10
          << ", which may cause serious incompatible bug. "
          << "Please recompile or reinstall Paddle with compatible CUDA "
             "version.";
    }
  }
428
  default_ctx_.reset(new CUDAContext(place_));
429 430 431 432
}

CUDADeviceContext::~CUDADeviceContext() {
  SetDeviceId(place_.device);
433 434 435 436 437
#if defined(PADDLE_WITH_NCCL)
  if (nccl_comm_) {
    PADDLE_ENFORCE_CUDA_SUCCESS(dynload::ncclCommDestroy(nccl_comm_));
  }
#endif
438 439
}

L
liaogang 已提交
440
Place CUDADeviceContext::GetPlace() const { return place_; }
441

442
void CUDADeviceContext::Wait() const { context()->Stream()->Wait(); }
443

K
Kexin Zhao 已提交
444
int CUDADeviceContext::GetComputeCapability() const {
C
chengduo 已提交
445
  return compute_capability_;
K
Kexin Zhao 已提交
446 447
}

448
int CUDADeviceContext::GetMaxPhysicalThreadCount() const {
C
chengduo 已提交
449
  return multi_process_ * max_threads_per_mp_;
450 451
}

452 453 454 455 456 457
int CUDADeviceContext::GetSMCount() const { return multi_process_; }

int CUDADeviceContext::GetMaxThreadsPerBlock() const {
  return max_threads_per_block_;
}

458
Eigen::GpuDevice* CUDADeviceContext::eigen_device() const {
459
  return context()->EigenDevice().get();
460 461
}

462
bool CUDADeviceContext::tensor_core_available() const {
463
  return context()->CublasTensorCoreHandle() != nullptr;
S
sneaxiy 已提交
464 465
}

466 467 468 469
dim3 CUDADeviceContext::GetCUDAMaxGridDimSize() const {
  return max_grid_dim_size_;
}

470 471 472
cudnnHandle_t CUDADeviceContext::cudnn_handle() const {
  return context()->CudnnHandle();
}
473

S
sneaxiy 已提交
474
CudnnWorkspaceHandle CUDADeviceContext::cudnn_workspace_handle() const {
475
  return CudnnWorkspaceHandle(*this, &cudnn_handle_mtx_);
476
}
477

G
Guo Sheng 已提交
478 479 480 481
cusolverDnHandle_t CUDADeviceContext::cusolver_dn_handle() const {
  return context()->CusolverDnHandle();
}

482 483 484
cudaStream_t CUDADeviceContext::stream() const {
  return context()->RawStream();
}
Q
qijun 已提交
485

C
chengduoZH 已提交
486 487 488 489 490 491 492 493 494 495 496 497 498 499
CUDAPinnedDeviceContext::CUDAPinnedDeviceContext() {
  eigen_device_.reset(new Eigen::DefaultDevice());
}

CUDAPinnedDeviceContext::CUDAPinnedDeviceContext(CUDAPinnedPlace place)
    : place_(place) {
  eigen_device_.reset(new Eigen::DefaultDevice());
}

Eigen::DefaultDevice* CUDAPinnedDeviceContext::eigen_device() const {
  return eigen_device_.get();
}

Place CUDAPinnedDeviceContext::GetPlace() const { return place_; }
L
Luo Tao 已提交
500
#endif
Q
qijun 已提交
501

T
tensor-tang 已提交
502 503
#ifdef PADDLE_WITH_MKLDNN
MKLDNNDeviceContext::MKLDNNDeviceContext(CPUPlace place)
A
Adam 已提交
504 505 506
    : CPUDeviceContext(place),
      engine_(mkldnn::engine::kind::cpu, 0),
      p_blobmap_() {
507 508
  p_blobmap_.reset(new BlobMap());
  p_mutex_.reset(new std::mutex());
T
tensor-tang 已提交
509 510
}

511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
MKLDNNDeviceContextThreadLocals::Body::Body() {
  cur_mkldnn_session_id = kMKLDNNSessionID_Default;
  cur_input_shape_str = "";
  cur_input_shape_cache_capacity = 1;
  cur_paddle_data_layout = paddle::framework::DataLayout::kNCHW;
}

void MKLDNNDeviceContextThreadLocals::Body::set_cur_mkldnn_session_id(
    size_t sid) {
  cur_mkldnn_session_id = sid;
}
size_t MKLDNNDeviceContextThreadLocals::Body::get_cur_mkldnn_session_id(void) {
  return cur_mkldnn_session_id;
}

void MKLDNNDeviceContextThreadLocals::Body::set_cur_input_shape_str(
    std::string input_shape_str) {
528 529
  cur_input_shape_str = input_shape_str;
}
530 531
void MKLDNNDeviceContextThreadLocals::Body::set_cur_input_shape_cache_capacity(
    int input_shape_cache_capacity) {
532 533
  cur_input_shape_cache_capacity = input_shape_cache_capacity;
}
S
Sylwester Fraczek 已提交
534

535 536
void MKLDNNDeviceContextThreadLocals::Body::set_cur_paddle_data_layout(
    framework::DataLayout dl) {
537 538 539
  cur_paddle_data_layout = dl;
}

540 541
framework::DataLayout
MKLDNNDeviceContextThreadLocals::Body::get_cur_paddle_data_layout(void) {
542 543 544
  return cur_paddle_data_layout;
}

545 546 547 548 549 550 551 552 553
void MKLDNNDeviceContextThreadLocals::Body::log_lib_version(void) {
  if (!said_once) {
    said_once = true;
    auto dv = dnnl::version();
    LOG(INFO) << "oneDNN v" << dv->major << "." << dv->minor << "."
              << dv->patch;
  }
}

554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
void MKLDNNDeviceContext::ResetBlobMap() {
  std::lock_guard<decltype(*p_mutex_)> lock(*p_mutex_);
  if (!block_next_cache_clearing_) {
    VLOG(3) << "Clearing DNNL cache.";
    p_blobmap_->clear();
  } else {
    VLOG(3) << "Prevented Clearing DNNL cache.";
    block_next_cache_clearing_ = false;
  }
}

void MKLDNNDeviceContext::BlockNextCacheClearing() {
  std::lock_guard<decltype(*p_mutex_)> lock(*p_mutex_);
  VLOG(3) << "Next DNNL cache clearing has been blocked.";
  block_next_cache_clearing_ = true;
569
}
570

571
size_t MKLDNNDeviceContext::GetShapeBlobSize() const {
572
  std::lock_guard<decltype(*p_mutex_)> lock(*p_mutex_);
573
  BlobMap* pMap = p_blobmap_.get();
574
  auto map_it = pMap->find(tls().cur_mkldnn_session_id);
575
  if (map_it == pMap->end()) {
576 577 578
    PADDLE_THROW(platform::errors::NotFound(
        "MKLDNNDeviceContext don't find cur_mkldnn_session_id: %d.",
        tls().cur_mkldnn_session_id));
579 580 581 582
  }
  return map_it->second->size();
}

583
void MKLDNNDeviceContext::SetBlob(const std::string& name,
584
                                  BlobPtr_t<void> data) const {
585
  BlobMap* pMap = p_blobmap_.get();
586 587
  BlobPtr_t<ShapeBlob> sBlob = nullptr;
  BlobPtr_t<KeyBlob> pBlob = nullptr;
588

589
  int sid = tls().get_cur_mkldnn_session_id();
T
tensor-tang 已提交
590

591
  std::lock_guard<decltype(*p_mutex_)> lock(*p_mutex_);
T
tensor-tang 已提交
592

593 594
  // Find ShapeBlob for current mkldnn session id.
  auto map_it = pMap->find(sid);
595 596 597

  if (map_it == pMap->end()) {
    // 1st time to set blob in current thread
598
    sBlob = std::make_shared<ShapeBlob>();
599 600
    (*pMap)[sid] = sBlob;
    VLOG(2) << "SetBlob: sid=" << sid << ", add new sid\n";
601
  } else {
602
    sBlob = map_it->second;
603
  }
T
tensor-tang 已提交
604

605
  // Find KeyBlob for current input shape
606
  auto key_it = sBlob->find(tls().cur_input_shape_str);
607

608
  if (key_it == sBlob->end()) {
609 610
    // In cache clearing mode, cur_input_shape_cache_capacity defines
    // max pblob capacity
611 612
    if ((static_cast<size_t>(sid) ==
         MKLDNNDeviceContextThreadLocals::kMKLDNNSessionID_CacheClearing) &&
613
        sBlob->size() &&
614
        (sBlob->size() >=
615
         static_cast<size_t>(tls().cur_input_shape_cache_capacity))) {
616 617 618 619
      VLOG(2) << "sid=" << sid
              << ", remove all blobs of shape: " << sBlob->begin()->first;
      sBlob->erase(sBlob->begin()->first);
    }
620 621
    pBlob = std::make_shared<KeyBlob>();
    (*sBlob)[tls().cur_input_shape_str] = pBlob;
622
  } else {
623
    pBlob = key_it->second;
624 625
  }

626 627 628 629 630 631 632
  // Find Blob via name
  auto blob_it = pBlob->find(name);
  if (blob_it == pBlob->end()) {
    (*pBlob)[name] = data;
  } else {
    blob_it->second = data;  // set data to existing blob
  }
633
  VLOG(2) << "SetBlob: sid=" << sid << ", add blob=" << name << "\n";
634
  // lock will be automatically released when out of scope
635
  return;
T
tensor-tang 已提交
636 637
}

638 639 640 641 642 643 644 645 646 647
unsigned int MKLDNNDeviceContext::GetCachedObjectsNumber(void) {
  unsigned int num_entries = 0;
  for (auto const& l3 : *p_blobmap_) {
    for (auto const& l2 : *(l3.second)) {
      num_entries += (l2.second)->size();
    }
  }
  return num_entries;
}

648
MKLDNNDeviceContext::BlobPtr_t<void> MKLDNNDeviceContext::GetBlob(
649
    const std::string& name) const {
650
  BlobMap* pMap = p_blobmap_.get();
651 652
  BlobPtr_t<ShapeBlob> sBlob = nullptr;
  BlobPtr_t<KeyBlob> pBlob = nullptr;
T
tensor-tang 已提交
653

654
  int sid = tls().get_cur_mkldnn_session_id();
T
tensor-tang 已提交
655

656
  std::lock_guard<decltype(*p_mutex_)> lock(*p_mutex_);
657

658 659
  // Find ShapeBlob for current mkldnn session id firstly
  auto map_it = pMap->find(sid);
660
  if (map_it == pMap->end()) {
661
    VLOG(2) << "GetBlob: sid=" << sid << ", miss sid\n";
662 663 664 665 666
    return nullptr;
  }
  sBlob = map_it->second;

  // Find KeyBlob for current input shape secondly
667
  auto sBlob_it = sBlob->find(tls().cur_input_shape_str);
668
  if (sBlob_it == sBlob->end()) {
669
    VLOG(2) << "GetBlob: sid=" << tls().cur_input_shape_str
670 671 672 673
            << ", miss input_shape_str\n";
    return nullptr;
  }
  pBlob = sBlob_it->second;
674 675 676 677

  // Find Blob via name
  auto key_it = pBlob->find(name);

678
  if (key_it == pBlob->end()) {
679
    VLOG(2) << "GetBlob sid=" << sid << ", miss blob=" << name << "\n";
680 681
    return nullptr;
  }
682

683
  VLOG(2) << "GetBlob sid=" << sid << ", get blob=" << name << "\n";
684 685
  // lock will be automatically released when out of scope
  return key_it->second;
T
tensor-tang 已提交
686 687 688
}

#endif
Q
qijun 已提交
689
}  // namespace platform
Q
qijun 已提交
690
}  // namespace paddle