sparse.h 6.9 KB
Newer Older
T
tangwei12 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include <gflags/gflags.h>
#include <math.h>  // for sqrt in CPU and CUDA
#include <functional>
#include <memory>
#include <string>
T
tangwei12 已提交
22
#include <unordered_map>
T
tangwei12 已提交
23 24 25 26 27 28 29 30 31 32 33
#include <utility>
#include <vector>

#include "paddle/fluid/distributed/common/utils.h"
#include "paddle/fluid/distributed/table/depends/large_scale_kv.h"

namespace paddle {
namespace distributed {

class SparseOptimizer {
 public:
T
tangwei12 已提交
34 35 36 37 38 39 40 41 42
  explicit SparseOptimizer(
      const std::vector<std::string>& value_names,
      const std::vector<int>& value_dims, const std::vector<int>& value_offsets,
      const std::unordered_map<std::string, int>& value_idx)
      : value_names_(value_names),
        value_dims_(value_dims),
        value_offsets_(value_offsets),
        value_idx_(value_idx) {}

T
tangwei12 已提交
43 44 45
  virtual void update(const uint64_t* keys, const float* update_values,
                      size_t num, const std::vector<uint64_t>& offsets,
                      ValueBlock* block) = 0;
T
tangwei12 已提交
46 47 48 49 50 51 52

  const std::vector<std::string>& value_names_;
  const std::vector<int>& value_dims_;
  const std::vector<int>& value_offsets_;
  const std::unordered_map<std::string, int>& value_idx_;
  int param_offset = 0;
  int update_numel = 0;
T
tangwei12 已提交
53 54 55 56 57
};

// sum calc for sparse tensor
class SSUM : public SparseOptimizer {
 public:
T
tangwei12 已提交
58 59 60 61 62 63 64 65
  explicit SSUM(const std::vector<std::string>& value_names,
                const std::vector<int>& value_dims,
                const std::vector<int>& value_offsets,
                const std::unordered_map<std::string, int>& value_idx)
      : SparseOptimizer(value_names, value_dims, value_offsets, value_idx) {
    auto idx = value_idx.at("Param");
    param_offset = value_offsets.at(idx);
    update_numel = value_dims.at(idx);
T
tangwei12 已提交
66 67 68 69 70 71 72 73
  }

  void update(const uint64_t* keys, const float* update_values, size_t num,
              const std::vector<uint64_t>& offsets,
              ValueBlock* block) override {
    auto blas = GetBlas<float>();
    for (auto x : offsets) {
      auto id = keys[x];
T
tangwei12 已提交
74 75 76
      auto* value = block->Get(id);
      float* param = value + param_offset;
      blas.VADD(update_numel, update_values + x * update_numel, param, param);
T
tangwei12 已提交
77 78 79 80 81 82 83
    }
  }
};

// sgd optimzer for sparse tensor
class SSGD : public SparseOptimizer {
 public:
T
tangwei12 已提交
84 85 86 87 88 89 90 91 92 93 94
  explicit SSGD(const std::vector<std::string>& value_names,
                const std::vector<int>& value_dims,
                const std::vector<int>& value_offsets,
                const std::unordered_map<std::string, int>& value_idx)
      : SparseOptimizer(value_names, value_dims, value_offsets, value_idx) {
    auto idx = value_idx.at("Param");
    param_offset = value_offsets.at(idx);
    update_numel = value_dims.at(idx);

    idx = value_idx.at("LearningRate");
    lr_offset = value_offsets.at(idx);
T
tangwei12 已提交
95 96 97 98 99 100 101 102
  }

  void update(const uint64_t* keys, const float* update_values, size_t num,
              const std::vector<uint64_t>& offsets,
              ValueBlock* block) override {
    auto blas = GetBlas<float>();
    for (auto x : offsets) {
      auto id = keys[x];
T
tangwei12 已提交
103 104 105 106
      auto* value = block->Get(id);

      float* learning_rate = value + lr_offset;
      float* param = value + param_offset;
T
tangwei12 已提交
107 108 109 110 111 112 113 114 115

      std::vector<float> grads;
      grads.resize(update_numel);
      blas.VCOPY(update_numel, update_values + x * update_numel, grads.data());
      blas.SCAL(update_numel, learning_rate[0], grads.data());
      blas.VSUB(update_numel, param, grads.data(), param);
    }
  }

T
tangwei12 已提交
116
  int lr_offset;
T
tangwei12 已提交
117 118 119 120 121
};

// adam optimzer for sparse tensor
class SAdam : public SparseOptimizer {
 public:
T
tangwei12 已提交
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
  explicit SAdam(const std::vector<std::string>& value_names,
                 const std::vector<int>& value_dims,
                 const std::vector<int>& value_offsets,
                 const std::unordered_map<std::string, int>& value_idx)
      : SparseOptimizer(value_names, value_dims, value_offsets, value_idx) {
    auto idx = value_idx.at("Param");
    param_offset = value_offsets.at(idx);
    update_numel = value_dims.at(idx);

    idx = value_idx.at("LearningRate");
    lr_offset = value_offsets.at(idx);

    idx = value_idx.at("Moment1");
    m1_offset = value_offsets.at(idx);

    idx = value_idx.at("Moment2");
    m2_offset = value_offsets.at(idx);

    idx = value_idx.at("Beta1Pow");
    beta1_pow_offset = value_offsets.at(idx);

    idx = value_idx.at("Beta2Pow");
    beta2_pow_offset = value_offsets.at(idx);
T
tangwei12 已提交
145 146 147 148 149 150 151 152 153 154 155 156 157

    // add attr later
    beta1 = 0.9;
    beta2 = 0.999;
    epsilon = 1.0e-8;
  }

  void update(const uint64_t* keys, const float* update_values, size_t num,
              const std::vector<uint64_t>& offsets,
              ValueBlock* block) override {
    auto blas = GetBlas<float>();
    for (auto x : offsets) {
      auto id = keys[x];
T
tangwei12 已提交
158 159 160 161 162 163 164
      auto* values = block->Get(id);
      float* learning_rate = values + lr_offset;
      float* param = values + param_offset;
      float* moment1 = values + m1_offset;
      float* moment2 = values + m2_offset;
      float* beta1_pow = values + beta1_pow_offset;
      float* beta2_pow = values + beta2_pow_offset;
T
tangwei12 已提交
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200

      beta1_pow[0] = beta1_pow[0] * beta1;
      beta2_pow[0] = beta2_pow[0] * beta2;

      float lr_ = learning_rate[0];
      lr_ *= sqrt(1 - beta2_pow[0]) / (1 - beta1_pow[0]);

      std::vector<float> grad, grad2, tmp;
      grad.resize(update_numel);
      grad2.resize(update_numel);
      tmp.resize(update_numel);

      blas.VCOPY(update_numel, update_values + x * update_numel, grad.data());
      blas.VCOPY(update_numel, update_values + x * update_numel, grad2.data());

      blas.SCAL(update_numel, 1 - beta1, grad.data());
      blas.VSQUARE(update_numel, grad2.data(), grad2.data());
      blas.SCAL(update_numel, 1 - beta2, grad2.data());

      blas.SCAL(update_numel, beta1, moment1);
      blas.VADD(update_numel, moment1, grad.data(), moment1);
      blas.SCAL(update_numel, beta2, moment2);
      blas.VADD(update_numel, moment2, grad2.data(), moment2);

      float* tmp_ = tmp.data();
      float eps_ = epsilon * sqrt(1 - beta2_pow[0]);

      SQRT<float>(update_numel, moment2, tmp_);
      ADD<float>(update_numel, tmp_, eps_, tmp_);

      blas.VDIV(update_numel, moment1, tmp_, tmp_);
      blas.SCAL(update_numel, lr_, tmp_);
      blas.VSUB(update_numel, param, tmp_, param);
    }
  }

T
tangwei12 已提交
201 202 203 204 205 206
  int lr_offset;
  int m1_offset;
  int m2_offset;
  int beta1_pow_offset;
  int beta2_pow_offset;

T
tangwei12 已提交
207 208 209 210 211 212 213
  float beta1;
  float beta2;
  float epsilon;
};

}  // namespace distributed
}  // namespace paddle