paddle_pass_builder.cc 8.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/inference/api/paddle_pass_builder.h"
16 17 18
#ifdef PADDLE_WITH_CUDA
#include <cudnn.h>
#endif
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
#include <glog/logging.h>

namespace paddle {

void PaddlePassBuilder::AppendPass(const std::string &pass_type) {
  passes_.push_back(pass_type);
}

void PaddlePassBuilder::TurnOnDebug() {
  std::vector<std::string> passes;
  auto it = std::begin(passes_);
  while (it != std::end(passes_)) {
    if (*it != "graph_viz_pass") {
      it = passes_.insert(it + 1, "graph_viz_pass");
    } else {
      ++it;
    }
  }
}

std::string PaddlePassBuilder::DebugString() {
  std::stringstream ss;
  ss << "Passes to apply:\n";
  for (auto &pass : passes_) {
    ss << "  - " << pass << '\n';
  }
  return ss.str();
}

void PaddlePassBuilder::DeletePass(const std::string &pass_type) {
  auto it = std::begin(passes_);
  while (it != std::end(passes_)) {
    if (*it == pass_type) {
      it = passes_.erase(it);
    } else {
      ++it;
    }
  }
}

void PaddlePassBuilder::InsertPass(size_t idx, const std::string &pass_type) {
  passes_.insert(std::begin(passes_) + idx, pass_type);
}

void PaddlePassBuilder::DeletePass(size_t idx) {
  passes_.erase(std::begin(passes_) + idx);
}

W
Wojciech Uss 已提交
67 68
void PaddlePassBuilder::AppendAnalysisPass(const std::string &pass) {
  analysis_passes_.push_back(pass);
69 70
}

W
Wojciech Uss 已提交
71 72
void PaddlePassBuilder::ClearPasses() { passes_.clear(); }

73
const std::vector<std::string> kTRTSubgraphPasses({
74
  "conv_affine_channel_fuse_pass",                 //
75
      "conv_eltwiseadd_affine_channel_fuse_pass",  //
76
      "shuffle_channel_detect_pass",               //
77 78
      "quant_conv2d_dequant_fuse_pass",            //
      "delete_quant_dequant_op_pass",              //
P
Pei Yang 已提交
79 80 81 82 83 84 85
      // "fc_fuse_pass",                                 //
      "simplify_with_basic_ops_pass",  //
      "multihead_matmul_fuse_pass",    //
      "conv_bn_fuse_pass",             //
      "fc_fuse_pass",                  //
      "tensorrt_subgraph_pass",        //
      "conv_bn_fuse_pass",             //
86 87 88 89 90 91 92 93 94
#if CUDNN_VERSION >= 7100  // To run conv_fusion, the version of cudnn must be
                           // guaranteed at least v7
      "conv_elementwise_add_act_fuse_pass",   //
      "conv_elementwise_add2_act_fuse_pass",  //
      "conv_elementwise_add_fuse_pass",       //
#endif                                        //
      "transpose_flatten_concat_fuse_pass",
});

95 96
// The following passes works for Anakin sub-graph engine.
const std::vector<std::string> kAnakinSubgraphPasses({
97
    "quant_conv2d_dequant_fuse_pass",               //
N
nhzlx 已提交
98 99 100 101 102
    "simplify_anakin_priorbox_detection_out_pass",  //
    "fillconstant_elementwisemul_fuse",             //
    "fc_fuse_pass",                                 //
    "conv_elementwise_add_fuse_pass",               //
    "fc_gru_fuse_pass",                             //
103 104 105
    "shuffle_channel_detect_pass",                  //
    "anakin_subgraph_pass",                         //
    "fc_gru_fuse_pass",                             //
106 107
});

108 109
GpuPassStrategy::GpuPassStrategy() : PassStrategy({}) {
  passes_.assign({
110
    //   "identity_scale_op_clean_pass",             //
111 112 113
    "is_test_pass",                                  //
        "simplify_with_basic_ops_pass",              //
        "conv_affine_channel_fuse_pass",             //
114 115
        "conv_eltwiseadd_affine_channel_fuse_pass",  //
        "conv_bn_fuse_pass",                         //
116
        "conv_eltwiseadd_bn_fuse_pass",              //
117 118 119
        "multihead_matmul_fuse_pass",
        "fc_fuse_pass",                        //
        "fc_elementwise_layernorm_fuse_pass",  //
120 121 122 123 124
#if CUDNN_VERSION >= 7100  // To run conv_fusion, the version of cudnn must be
                           // guaranteed at least v7
        "conv_elementwise_add_act_fuse_pass",   //
        "conv_elementwise_add2_act_fuse_pass",  //
        "conv_elementwise_add_fuse_pass",       //
N
nhzlx 已提交
125 126
#endif                                          //
        "transpose_flatten_concat_fuse_pass",
127
        // following pass should be located in the last, since it will
128 129
        // work on all fused ops.
        "runtime_context_cache_pass"
130 131 132 133 134
  });

  use_gpu_ = true;
}

135 136 137 138 139 140 141
void GpuPassStrategy::EnableCUDNN() {
  if (!use_cudnn_) {
    passes_.insert(passes_.begin(), "cudnn_placement_pass");
  }
  use_cudnn_ = true;
}

W
Wojciech Uss 已提交
142 143
void GpuPassStrategy::EnableMKLDNN() {
  LOG(ERROR) << "GPU not support MKLDNN yet";
144 145
}

W
Wojciech Uss 已提交
146 147
void GpuPassStrategy::EnableMkldnnQuantizer() {
  LOG(ERROR) << "GPU not support MKL-DNN quantization";
Y
Yan Chunwei 已提交
148 149
}

M
mozga-intel 已提交
150 151 152 153
void GpuPassStrategy::EnableNgraph() {
  LOG(ERROR) << "GPU not support Ngraph yet";
}

154 155 156
CpuPassStrategy::CpuPassStrategy() : PassStrategy({}) {
  // NOTE the large fusions should be located in the front, so that they will
  // not be damaged by smaller ones.
157 158
  passes_.assign({"simplify_with_basic_ops_pass",   //
                  "attention_lstm_fuse_pass",       //
159 160
                  "seqconv_eltadd_relu_fuse_pass",  //
                  // "seqpool_concat_fuse_pass",    //
161
                  "seqpool_cvm_concat_fuse_pass",  //
162
                  // "embedding_fc_lstm_fuse_pass", //
163 164 165 166 167 168 169 170 171 172 173 174 175
                  "fc_lstm_fuse_pass",                       //
                  "mul_lstm_fuse_pass",                      //
                  "fc_gru_fuse_pass",                        //
                  "mul_gru_fuse_pass",                       //
                  "seq_concat_fc_fuse_pass",                 //
                  "fc_fuse_pass",                            //
                  "repeated_fc_relu_fuse_pass",              //
                  "squared_mat_sub_fuse_pass",               //
                  "conv_bn_fuse_pass",                       //
                  "conv_eltwiseadd_bn_fuse_pass",            //
                  "conv_transpose_bn_fuse_pass",             //
                  "conv_transpose_eltwiseadd_bn_fuse_pass",  //
                  "is_test_pass",                            //
176 177
                  // following pass should be located in the last, since
                  // it will work on all fused ops.
178
                  "runtime_context_cache_pass"});
Y
Yan Chunwei 已提交
179

180 181
  use_gpu_ = false;
}
W
Wojciech Uss 已提交
182

183 184
void CpuPassStrategy::EnableCUDNN() { LOG(ERROR) << "CPU not support cuDNN"; }

W
Wojciech Uss 已提交
185 186 187 188 189 190
void CpuPassStrategy::EnableMKLDNN() {
// TODO(Superjomn) Consider the way to mix CPU with GPU.
#ifdef PADDLE_WITH_MKLDNN
  if (!use_mkldnn_) {
    passes_.insert(passes_.begin(), "mkldnn_placement_pass");

191 192 193 194
    for (auto &pass : std::vector<std::string>({
             "depthwise_conv_mkldnn_pass",    //
             "conv_bn_fuse_pass",             // Execute BN passes again to
             "conv_eltwiseadd_bn_fuse_pass",  // preserve correct pass order
195 196 197
             "conv_transpose_bn_fuse_pass",   //
             "conv_transpose_eltwiseadd_bn_fuse_pass",  //
             "conv_bias_mkldnn_fuse_pass",              //
198
             "conv_transpose_bias_mkldnn_fuse_pass",
199 200 201
             "conv3d_bias_mkldnn_fuse_pass",  //
             "conv_elementwise_add_mkldnn_fuse_pass",
             "conv_concat_relu_mkldnn_fuse_pass",
202 203 204
             "conv_relu_mkldnn_fuse_pass",        //
             "conv_leaky_relu_mkldnn_fuse_pass",  //
             "conv_relu6_mkldnn_fuse_pass",       //
205 206 207
             // Disabled due to topology-dependent speed-up
             // "fc_mkldnn_pass"
         })) {
W
Wojciech Uss 已提交
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
      passes_.push_back(pass);
    }
  }
  use_mkldnn_ = true;
#else
  use_mkldnn_ = false;
#endif
}

void CpuPassStrategy::EnableMkldnnQuantizer() {
#ifdef PADDLE_WITH_MKLDNN
  if (!use_mkldnn_quantizer_) {
    passes_.push_back("cpu_quantize_placement_pass");
  }
  use_mkldnn_quantizer_ = true;
#else
  use_mkldnn_quantizer_ = false;
#endif
}

M
mozga-intel 已提交
228 229 230 231 232 233 234 235 236 237
void CpuPassStrategy::EnableNgraph() {
#ifdef PADDLE_WITH_NGRAPH
  if (!use_ngraph_) {
    passes_.insert(passes_.begin(), "ngraph_subgraph_pass");
  }
  use_ngraph_ = true;
#else
  use_ngraph_ = false;
#endif
}
238
}  // namespace paddle