lamb_op.h 11.1 KB
Newer Older
Y
Yibing Liu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
#include <math.h>  // for sqrt in CPU and CUDA
#include <Eigen/Dense>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/algorithm.h"
#include "paddle/fluid/operators/math/selected_rows_functor.h"
#include "paddle/fluid/platform/for_range.h"

namespace paddle {
namespace operators {

namespace scatter = paddle::operators::math::scatter;

template <typename T>
struct LambMomentUpdateFunctor {
  T weight_decay_;
  T beta1_;
  T beta2_;
  T epsilon_;

  const T* beta1_pow_;
  const T* beta2_pow_;
  const T* moment1_;
  T* moment1_out_;
  const T* moment2_;
  T* moment2_out_;
  const T* grad_;
  const T* param_;
  T* trust_ratio_div_;

  LambMomentUpdateFunctor(T weight_decay, T beta1, T beta2, T epsilon,
                          const T* beta1_pow, const T* beta2_pow, const T* mom1,
                          T* mom1_out, const T* mom2, T* mom2_out,
                          const T* grad, const T* param, T* trust_ratio_div)
      : weight_decay_(weight_decay),
        beta1_(beta1),
        beta2_(beta2),
        epsilon_(epsilon),
        beta1_pow_(beta1_pow),
        beta2_pow_(beta2_pow),
        moment1_(mom1),
        moment1_out_(mom1_out),
        moment2_(mom2),
        moment2_out_(mom2_out),
        grad_(grad),
        param_(param),
        trust_ratio_div_(trust_ratio_div) {}

  inline HOSTDEVICE void operator()(size_t i) const {
    T g = grad_[i];
    T mom1 = moment1_[i];
    T mom2 = moment2_[i];
    T p = param_[i];

    mom1 = beta1_ * mom1 + (1 - beta1_) * g;
    mom2 = beta2_ * mom2 + (1 - beta2_) * g * g;

    moment1_out_[i] = mom1;
    moment2_out_[i] = mom2;
Y
Yibing Liu 已提交
75
    trust_ratio_div_[i] = mom1 / (sqrt(mom2) + epsilon_) + weight_decay_ * p;
Y
Yibing Liu 已提交
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
  }
};

template <typename T>
struct SparseLambMomentUpdateFunctor {
  T weight_decay_;
  T beta1_;
  T beta2_;
  T epsilon_;

  const T* beta1_pow_;
  const T* beta2_pow_;
  const T* moment1_;
  T* moment1_out_;
  const T* moment2_;
  T* moment2_out_;
  const T* grad_;
  const T* param_;
  T* trust_ratio_div_;

  const int64_t* rows_;
  int64_t row_numel_;
  int64_t row_count_;

  SparseLambMomentUpdateFunctor(T weight_decay, T beta1, T beta2, T epsilon,
                                const T* beta1_pow, const T* beta2_pow,
                                const T* mom1, T* mom1_out, const T* mom2,
                                T* mom2_out, const T* grad, const T* param,
                                T* trust_ratio_div, const int64_t* rows,
                                int64_t row_numel, int64_t row_count)
      : weight_decay_(weight_decay),
        beta1_(beta1),
        beta2_(beta2),
        epsilon_(epsilon),
        beta1_pow_(beta1_pow),
        beta2_pow_(beta2_pow),
        moment1_(mom1),
        moment1_out_(mom1_out),
        moment2_(mom2),
        moment2_out_(mom2_out),
        grad_(grad),
        param_(param),
        trust_ratio_div_(trust_ratio_div),
        rows_(rows),
        row_numel_(row_numel),
        row_count_(row_count) {}

  inline HOSTDEVICE void update(size_t i, T g) const {
    // The following code is same as dense
    T mom1 = moment1_[i];
    T mom2 = moment2_[i];
    T p = param_[i];

    mom1 = beta1_ * mom1 + (1 - beta1_) * g;
    mom2 = beta2_ * mom2 + (1 - beta2_) * g * g;

    moment1_out_[i] = mom1;
    moment2_out_[i] = mom2;
Y
Yibing Liu 已提交
134
    trust_ratio_div_[i] = mom1 / (sqrt(mom2) + epsilon_) + weight_decay_ * p;
Y
Yibing Liu 已提交
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
  }

  inline HOSTDEVICE void operator()(size_t i) const {
    auto row_idx =
        math::BinarySearch<int64_t>(rows_, row_count_, i / row_numel_);
    T g = row_idx >= 0 ? grad_[row_idx * row_numel_ + i % row_numel_] : 0;
    update(i, g);
  }
};

template <typename T>
struct LambParamUpateFunctor {
  const T* lr_;
  const T* param_;
  const T* param_norm_;
  const T* trust_ratio_div_;
  const T* trust_ratio_div_norm_;
  T* param_out_;

  LambParamUpateFunctor(const T* lr, const T* param, const T* param_norm,
                        const T* trust_ratio_div, const T* trust_ratio_div_norm,
                        T* param_out)
      : lr_(lr),
        param_(param),
        param_norm_(param_norm),
        trust_ratio_div_(trust_ratio_div),
        trust_ratio_div_norm_(trust_ratio_div_norm),
        param_out_(param_out) {}

  inline HOSTDEVICE void operator()(size_t i) const {
    T lr = *lr_;
Y
Yibing Liu 已提交
166 167
    T p = *param_norm_;
    T t = *trust_ratio_div_norm_;
Y
Yibing Liu 已提交
168

Y
Yibing Liu 已提交
169 170
    T r = (p > 0 && t > 0) ? p / t : 1.0;
    lr *= r;
Y
Yibing Liu 已提交
171 172 173 174 175 176 177 178 179
    param_out_[i] = param_[i] - lr * trust_ratio_div_[i];
  }
};

template <typename DeviceContext, typename T>
class LambOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    const auto* param_var = ctx.InputVar("Param");
180 181 182 183 184 185
    PADDLE_ENFORCE_EQ(param_var->IsType<framework::LoDTensor>(), true,
                      platform::errors::InvalidArgument(
                          "The Var(%s)'s type should be LoDTensor, "
                          "but the received is %s",
                          ctx.InputNames("Param").front(),
                          framework::ToTypeName(param_var->Type())));
Y
Yibing Liu 已提交
186 187 188 189 190 191 192

    using paddle::framework::LoDTensor;

    T weight_decay = static_cast<T>(ctx.Attr<float>("weight_decay"));
    T beta1 = static_cast<T>(ctx.Attr<float>("beta1"));
    T beta2 = static_cast<T>(ctx.Attr<float>("beta2"));
    T epsilon = static_cast<T>(ctx.Attr<float>("epsilon"));
193 194
    auto& param = GET_DATA_SAFELY(ctx.Input<LoDTensor>("Param"), "Input",
                                  "Param", "Lamb");
Y
Yibing Liu 已提交
195
    auto* grad_var = ctx.InputVar("Grad");
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
    auto& mom1 = GET_DATA_SAFELY(ctx.Input<LoDTensor>("Moment1"), "Input",
                                 "Moment1", "Lamb");
    auto& mom2 = GET_DATA_SAFELY(ctx.Input<LoDTensor>("Moment2"), "Input",
                                 "Moment2", "Lamb");
    auto& lr = GET_DATA_SAFELY(ctx.Input<LoDTensor>("LearningRate"), "Input",
                               "LearningRate", "Lamb");

    auto& beta1_pow = GET_DATA_SAFELY(ctx.Input<LoDTensor>("Beta1Pow"), "Input",
                                      "Beta1Pow", "Lamb");
    auto& beta2_pow = GET_DATA_SAFELY(ctx.Input<LoDTensor>("Beta2Pow"), "Input",
                                      "Beta2Pow", "Lamb");

    auto& param_out = GET_DATA_SAFELY(ctx.Output<LoDTensor>("ParamOut"),
                                      "Output", "ParamOut", "Lamb");
    auto& mom1_out = GET_DATA_SAFELY(ctx.Output<LoDTensor>("Moment1Out"),
                                     "Output", "Moment1Out", "Lamb");
    auto& mom2_out = GET_DATA_SAFELY(ctx.Output<LoDTensor>("Moment2Out"),
                                     "Output", "Moment2Out", "Lamb");
Y
Yibing Liu 已提交
214 215 216 217 218 219 220 221

    auto& dev_ctx = ctx.template device_context<DeviceContext>();
    platform::ForRange<DeviceContext> for_range(dev_ctx, param.numel());
    framework::Tensor trust_ratio_div =
        ctx.AllocateTmpTensor<T, DeviceContext>(param.dims(), dev_ctx);

    // Update moments
    if (grad_var->IsType<framework::LoDTensor>()) {
222
      auto& grad = *ctx.Input<LoDTensor>("Grad");
Y
Yibing Liu 已提交
223 224 225 226 227 228 229 230 231 232 233

      LambMomentUpdateFunctor<T> moment_update_functor(
          weight_decay, beta1, beta2, epsilon, beta1_pow.template data<T>(),
          beta2_pow.template data<T>(), mom1.template data<T>(),
          mom1_out.template mutable_data<T>(ctx.GetPlace()),
          mom2.template data<T>(),
          mom2_out.template mutable_data<T>(ctx.GetPlace()),
          grad.template data<T>(), param.template data<T>(),
          trust_ratio_div.template data<T>());
      for_range(moment_update_functor);
    } else if (grad_var->IsType<framework::SelectedRows>()) {
234 235
      auto& grad = GET_DATA_SAFELY(ctx.Input<framework::SelectedRows>("Grad"),
                                   "Input", "Grad", "Lamb");
Y
Yibing Liu 已提交
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
      if (grad.rows().size() == 0) {
        VLOG(3) << "grad row size is 0!!";
        return;
      }

      std::vector<int64_t> cpu_rows(grad.rows().begin(), grad.rows().end());
      bool is_strict_sorted = true;
      for (size_t i = 1; i < cpu_rows.size(); ++i) {
        if (cpu_rows[i - 1] >= cpu_rows[i]) {
          is_strict_sorted = false;
          break;
        }
      }

      framework::SelectedRows tmp_grad_merge;
      const framework::SelectedRows* grad_merge_ptr;
      if (is_strict_sorted) {
        grad_merge_ptr = &grad;
      } else {
        // merge duplicated rows if any.
        // The rows of grad_merge have been sorted inside MergeAdd functor
        scatter::MergeAdd<DeviceContext, T> merge_func;
        merge_func(dev_ctx, grad, &tmp_grad_merge, true);
        grad_merge_ptr = &tmp_grad_merge;
      }

      auto& grad_merge = *grad_merge_ptr;
      auto& grad_tensor = grad_merge.value();
      const T* grad_data = grad_tensor.template data<T>();
      const int64_t* rows = grad_merge.rows().Data(ctx.GetPlace());
      auto row_numel = grad_tensor.numel() / grad_merge.rows().size();

      SparseLambMomentUpdateFunctor<T> moment_update_functor(
          weight_decay, beta1, beta2, epsilon, beta1_pow.template data<T>(),
          beta2_pow.template data<T>(), mom1.template data<T>(),
          mom1_out.template mutable_data<T>(ctx.GetPlace()),
          mom2.template data<T>(),
          mom2_out.template mutable_data<T>(ctx.GetPlace()), grad_data,
          param.template data<T>(), trust_ratio_div.template data<T>(), rows,
          row_numel, grad_merge.rows().size());
      for_range(moment_update_functor);
    } else {
278 279 280 281
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Variable type not supported by lamb_op. Expect LoDTensor or "
          "SelectedRows, but got %s",
          framework::ToTypeName(param_var->Type())));
Y
Yibing Liu 已提交
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
    }

    // Update parameter
    framework::Tensor p_norm_t =
        ctx.AllocateTmpTensor<T, DeviceContext>({1}, dev_ctx);
    framework::Tensor trust_ratio_div_norm_t =
        ctx.AllocateTmpTensor<T, DeviceContext>({1}, dev_ctx);
    auto p_norm = framework::EigenScalar<T>::From(p_norm_t);
    auto trust_ratio_div_norm =
        framework::EigenScalar<T>::From(trust_ratio_div_norm_t);

    auto p = framework::EigenVector<T>::Flatten(param);
    auto t = framework::EigenVector<T>::Flatten(trust_ratio_div);

    auto* place = dev_ctx.eigen_device();
    p_norm.device(*place) = p.square().sum().sqrt();
    trust_ratio_div_norm.device(*place) = t.square().sum().sqrt();

    LambParamUpateFunctor<T> param_update_functor(
        lr.template data<T>(), param.template data<T>(),
        p_norm_t.template data<T>(), trust_ratio_div.template data<T>(),
        trust_ratio_div_norm_t.template data<T>(),
        param_out.template mutable_data<T>(ctx.GetPlace()));
    for_range(param_update_functor);
  }
};

}  // namespace operators
}  // namespace paddle