embedding_kernel.cu 3.8 KB
Newer Older
P
phlrain 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/kernels/embedding_kernel.h"
#include "paddle/phi/kernels/funcs/embedding_util.h"

#include "paddle/fluid/framework/convert_utils.h"
#include "paddle/fluid/framework/data_type.h"
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/eigen/eigen_function.h"

namespace phi {

P
phlrain 已提交
26
template <typename T, typename IdT, bool PaddingFlag>
P
phlrain 已提交
27 28 29 30 31 32 33 34
__global__ void LookupTableV2(T *output,
                              const T *table,
                              const IdT *ids,
                              const int64_t N,
                              const int64_t K,
                              const int64_t D,
                              const int64_t padding_idx) {
  int idx = threadIdx.x;
P
phlrain 已提交
35
  int idy = blockIdx.x + threadIdx.y * gridDim.x;
P
phlrain 已提交
36 37 38 39 40

  while (idy < K) {
    auto id = static_cast<int64_t>(ids[idy]);
    T *out = output + idy * D;
    const T *tab = table + id * D;
P
phlrain 已提交
41
    for (int i = idx; i < D; i += blockDim.x) {
P
phlrain 已提交
42 43 44 45 46 47 48 49 50
      if (PaddingFlag) {
        if (id == padding_idx)
          out[i] = static_cast<T>(0);
        else
          out[i] = tab[i];
      } else {
        out[i] = tab[i];
      }
    }
P
phlrain 已提交
51
    idy += blockDim.y * gridDim.x;
P
phlrain 已提交
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
  }
}

template <typename T, typename Context>
struct LookupTableV2CUDAFunctor {
  LookupTableV2CUDAFunctor(const Context &dev_ctx,
                           const DenseTensor &input,
                           const DenseTensor &weight,
                           int64_t padding_idx,
                           DenseTensor *out)
      : dev_ctx_(dev_ctx),
        input_(input),
        weight_(weight),
        out_(out),
        padding_idx_(padding_idx) {}

  template <typename IdT>
  void apply() {
    size_t N = weight_.dims()[0];
    size_t D = weight_.dims()[1];
    size_t K = input_.numel();

P
phlrain 已提交
74
    const int gridx = 2 * dev_ctx_.GetSMCount();
P
phlrain 已提交
75
    dim3 threads(256, 4);
P
phlrain 已提交
76
    dim3 grids(gridx, 1);
P
phlrain 已提交
77

P
phlrain 已提交
78 79
    const T *table = weight_.template data<T>();
    const IdT *ids = input_.template data<IdT>();
P
phlrain 已提交
80 81 82 83
    auto *output = out_->template mutable_data<T>(dev_ctx_.GetPlace());
    auto stream = dev_ctx_.stream();

    if (padding_idx_ == -1) {
P
phlrain 已提交
84
      LookupTableV2<T, IdT, false><<<grids, threads, 0, stream>>>(
P
phlrain 已提交
85 86
          output, table, ids, N, K, D, padding_idx_);
    } else {
P
phlrain 已提交
87
      LookupTableV2<T, IdT, true><<<grids, threads, 0, stream>>>(
P
phlrain 已提交
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
          output, table, ids, N, K, D, padding_idx_);
    }
  }

 private:
  const phi::GPUContext &dev_ctx_;
  const DenseTensor &input_;
  const DenseTensor &weight_;
  DenseTensor *out_;
  int64_t padding_idx_;
};

template <typename T, typename Context>
void EmbeddingKernel(const Context &ctx,
                     const DenseTensor &input,
                     const DenseTensor &weight,
                     int64_t padding_idx,
                     DenseTensor *out) {
  LookupTableV2CUDAFunctor<T, Context> functor(
      ctx, input, weight, padding_idx, out);
  paddle::framework::VisitIntDataType(
      paddle::framework::TransToProtoVarType(input.dtype()), functor);
}

}  // namespace phi

P
phlrain 已提交
114
PD_REGISTER_KERNEL(embedding,
P
phlrain 已提交
115 116 117 118 119 120
                   GPU,
                   ALL_LAYOUT,
                   phi::EmbeddingKernel,
                   float,
                   double,
                   phi::dtype::float16) {}