model_parallel_optimizer.py 10.9 KB
Newer Older
S
sandyhouse 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and

from __future__ import print_function
from __future__ import division

import paddle.fluid as fluid
from paddle.fluid import core, unique_name
from ..base.private_helper_function import wait_server_ready
from .meta_optimizer_base import MetaOptimizerBase
from .common import OpRole, OP_ROLE_KEY, OP_ROLE_VAR_KEY, CollectiveHelper, is_update_op, is_loss_grad_op, is_backward_op, is_optimizer_op


class ModelParallelHelper(object):
S
update  
sandyhouse 已提交
25
    def __init__(self, role_maker, wait_port=True, megatron_dp=False):
S
sandyhouse 已提交
26 27
        self.wait_port = wait_port
        self.role_maker = role_maker
S
update  
sandyhouse 已提交
28
        self.megatron_dp = megatron_dp
S
sandyhouse 已提交
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

    def update_startup_program(self,
                               startup_program=None,
                               inner_parallelism=None):
        self.startup_program = startup_program

        nranks = self.role_maker._worker_num()
        rank = self.role_maker._worker_index()
        endpoints = self.role_maker._get_trainer_endpoints()
        current_endpoint = endpoints[rank]

        # Create ring 0 for all model parallel parts within a single model
        mp_endpoints = []
        mp_rank = rank % inner_parallelism
        mp_id = rank // inner_parallelism
        for idx, ep in enumerate(endpoints):
            if idx // inner_parallelism == mp_id:
                mp_endpoints.append(ep)
        print("model parallel eps:{}, rank{}".format(mp_endpoints, mp_rank))
        self._init_communicator(self.startup_program, current_endpoint,
                                mp_endpoints, mp_rank, 0, self.wait_port)
        self._broadcast_params(0, broadcast_distributed_weight=False)

S
update  
sandyhouse 已提交
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
        print("megatron group size: {}".format(inner_parallelism))
        print("megatron rank: {}".format(mp_rank))
        print("megatron endpoints: {}".format(mp_endpoints))

        if self.megatron_dp:
            mp_num = len(endpoints) // inner_parallelism
            if mp_num == 1: return
            # Create rings for gpus as the same model parallel part
            eps = []
            dp_rank = rank // inner_parallelism
            dp_id = rank % inner_parallelism
            #if dp_rank == 1: dp_rank =0
            #if dp_rank == 0: dp_rank =1
            ring_id = 1
            for idx, ep in enumerate(endpoints):
                if idx % inner_parallelism == dp_id:
                    eps.append(ep)
            #ep = eps.pop(0)
            #eps.insert(1, ep)
            print("data parallel eps:{}, rank{}".format(eps, dp_rank))
            self._init_communicator(self.startup_program, current_endpoint, eps,
                                    dp_rank, ring_id, self.wait_port)
            self._broadcast_params(ring_id, broadcast_distributed_weight=True)
S
sandyhouse 已提交
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137

    def _init_communicator(self, program, current_endpoint, endpoints, rank,
                           ring_id, wait_port):
        nranks = len(endpoints)
        other_endpoints = endpoints[:]
        other_endpoints.remove(current_endpoint)
        if rank == 0 and wait_port:
            wait_server_ready(other_endpoints)

        block = program.global_block()
        nccl_id_var = block.create_var(
            name=unique_name.generate('nccl_id'),
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        block.append_op(
            type='c_gen_nccl_id',
            inputs={},
            outputs={'Out': nccl_id_var},
            attrs={
                'rank': rank,
                'endpoint': current_endpoint,
                'other_endpoints': other_endpoints,
                OP_ROLE_KEY: OpRole.Forward,
            })
        block.append_op(
            type='c_comm_init',
            inputs={'X': nccl_id_var},
            outputs={},
            attrs={
                'nranks': nranks,
                'rank': rank,
                'ring_id': ring_id,
                OP_ROLE_KEY: OpRole.Forward,
            })

    def _broadcast_params(self, ring_id, broadcast_distributed_weight):
        block = self.startup_program.global_block()
        for param in block.iter_parameters():
            if not broadcast_distributed_weight and param.is_distributed:
                continue

            block.append_op(
                type='c_broadcast',
                inputs={'X': param},
                outputs={'Out': param},
                attrs={
                    'ring_id': ring_id,
                    'root': 0,
                    OP_ROLE_KEY: OpRole.Forward
                })

        block.append_op(
            type='c_sync_comm_stream',
            inputs={'X': param},
            outputs={'Out': param},
            attrs={'ring_id': ring_id,
                   OP_ROLE_KEY: OpRole.Forward})


class ModelParallelOptimizer(MetaOptimizerBase):
    def __init__(self, optimizer):
        super(ModelParallelOptimizer, self).__init__(optimizer)
        self.inner_opt = optimizer
S
update  
sandyhouse 已提交
138 139 140 141 142 143
        self.meta_optimizers_white_list = [
            "RecomputeOptimizer",
            "AMPOptimizer",
            "LarsOptimizer",
            "LambOptimizer",
        ]
S
sandyhouse 已提交
144
        self.meta_optimizers_black_list = ["GraphExecutionOptimizer", ]
S
update  
sandyhouse 已提交
145
        self.megatron_dp = False
S
sandyhouse 已提交
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169

    def _set_basic_info(self, loss, role_maker, user_defined_optimizer,
                        user_defined_strategy):
        super(ModelParallelOptimizer, self)._set_basic_info(
            loss, role_maker, user_defined_optimizer, user_defined_strategy)
        self.inner_parallelism = user_defined_strategy.model_parallel_configs[
            'parallelism']

    def _can_apply(self):
        if not self.role_maker._is_collective:
            return False

        if self.user_defined_strategy.model_parallel == True:
            return True
        return False

    def _disable_strategy(self, dist_strategy):
        dist_strategy.model_parallel = False
        dist_strategy.model_parallel_configs = {}

    def _enable_strategy(self, dist_strategy, context):
        dist_strategy.model_parallel = True
        dist_strategy.model_parallel_configs = {"parallelism": 1, }

S
update  
sandyhouse 已提交
170 171 172 173
    # the following function will be used by AMP if both Megatron and AMP are turn on together.
    def apply_gradients(self, params_grads):
        return self.minimize_impl(params_grads=params_grads)

S
sandyhouse 已提交
174 175 176 177 178 179 180 181 182 183 184
    def minimize_impl(self,
                      loss,
                      startup_program=None,
                      parameter_list=None,
                      no_grad_set=None):
        endpoints = self.role_maker._get_trainer_endpoints()
        current_endpoint = endpoints[self.role_maker._worker_index()]
        self.startup_program = startup_program
        if startup_program is None:
            self.startup_program = fluid.default_startup_program()

S
update  
sandyhouse 已提交
185 186
        # (TODO) check the order of metaoptimizer
        # (TODO) check the params_grads
S
sandyhouse 已提交
187 188 189 190 191 192 193 194 195 196 197 198 199
        optimize_ops, params_grads = self.inner_opt.minimize(
            loss, self.startup_program, parameter_list, no_grad_set)

        self.main_program = loss.block.program
        self.inner_parallelism = self.inner_parallelism
        self.nranks = len(endpoints)

        pipeline_helper = ModelParallelHelper(self.role_maker)
        pipeline_helper.update_startup_program(self.startup_program,
                                               self.inner_parallelism)

        assert self.nranks % self.inner_parallelism == 0

S
update  
sandyhouse 已提交
200 201 202 203 204
        if self.megatron_dp:
            # data parallelism
            dp_parallelism = self.nranks // self.inner_parallelism

            self._transpile_main_program(loss, dp_parallelism)
S
sandyhouse 已提交
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
        return optimize_ops, params_grads

    def _transpile_main_program(self, loss, dp_parallelism):
        self._insert_loss_grad_ops(loss, dp_parallelism)
        ring_id = 1
        print("ring_id: ", ring_id)
        # for ring_id in range(1, dp_parallelism + 1):
        self._insert_allreduce_ops(loss, ring_id)

    def _insert_loss_grad_ops(self, loss, dp_parallelism):
        """
        In order to keep the learning rate consistent in different numbers of
        training workers, we scale the loss grad by the number of workers
        """
        block = loss.block
        for idx, op in reversed(list(enumerate(block.ops))):
            if is_loss_grad_op(op):
                loss_grad_var = block.vars[op.output_arg_names[0]]
                block._insert_op(
                    idx + 1,
                    type='scale',
                    inputs={'X': loss_grad_var},
                    outputs={'Out': loss_grad_var},
                    attrs={
                        'scale': 1.0 / dp_parallelism,
                        OP_ROLE_KEY: OpRole.Backward
                    })

    def _insert_allreduce_ops(self, loss, ring_id):
        block = loss.block
        grad = None
        for idx, op in reversed(list(enumerate(block.ops))):
            if is_backward_op(op) and \
                    OP_ROLE_VAR_KEY in op.attr_names:
                op_role_var = op.all_attrs()[OP_ROLE_VAR_KEY]
                if len(op_role_var) == 0:
                    continue
                assert len(op_role_var) % 2 == 0
                offset = idx
                for i in range(0, len(op_role_var), 2):
                    param = block.vars[op_role_var[i]]
                    grad = block.vars[op_role_var[i + 1]]
                    #if param.is_distributed:
                    #    continue
                    if offset == idx:
                        offset += 1
                        block._insert_op(
                            offset,
                            type='c_sync_calc_stream',
                            inputs={'X': grad},
                            outputs={'Out': grad},
                            attrs={OP_ROLE_KEY: OpRole.Backward})
                        offset += 1

                    block._insert_op(
                        offset,
                        type='c_allreduce_sum',
                        inputs={'X': grad},
                        outputs={'Out': grad},
                        attrs={
                            'ring_id': ring_id,
                            OP_ROLE_KEY: OpRole.Backward
                        })

        if grad is None:
            return

        for idx, op in list(enumerate(block.ops)):
            if is_optimizer_op(op):
                block._insert_op(
                    idx,
                    type='c_sync_comm_stream',
                    inputs={'X': grad},
                    outputs={'Out': grad},
                    attrs={'ring_id': ring_id,
                           OP_ROLE_KEY: OpRole.Backward})
            break