layer_helper.py 16.9 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Y
Yu Yang 已提交
15 16 17
import copy
import itertools

Y
Yu Yang 已提交
18 19
from framework import Variable, Parameter, default_main_program, default_startup_program, dtype_is_floating
import unique_name
20
from paddle.fluid.initializer import Constant, Xavier
G
guosheng 已提交
21
from param_attr import ParamAttr, WeightNormParamAttr
D
dzhwinter 已提交
22
import core
Y
Yu Yang 已提交
23

Y
Yu Yang 已提交
24 25 26 27 28 29 30

class LayerHelper(object):
    def __init__(self, layer_type, **kwargs):
        self.kwargs = kwargs
        self.layer_type = layer_type
        name = self.kwargs.get('name', None)
        if name is None:
Y
Yu Yang 已提交
31
            self.kwargs['name'] = unique_name.generate(self.layer_type)
Y
Yu Yang 已提交
32 33 34 35 36 37

    @property
    def name(self):
        return self.kwargs['name']

    @property
38
    def main_program(self):
39
        return default_main_program()
Y
Yu Yang 已提交
40

Q
QI JUN 已提交
41
    @property
42
    def startup_program(self):
43
        return default_startup_program()
Q
QI JUN 已提交
44

Y
Yu Yang 已提交
45
    def append_op(self, *args, **kwargs):
46
        return self.main_program.current_block().append_op(*args, **kwargs)
Y
Yu Yang 已提交
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70

    def multiple_input(self, input_param_name='input'):
        inputs = self.kwargs.get(input_param_name, [])
        type_error = TypeError(
            "Input of {0} layer should be Variable or sequence of Variable".
            format(self.layer_type))
        if isinstance(inputs, Variable):
            inputs = [inputs]
        elif not isinstance(inputs, list) and not isinstance(inputs, tuple):
            raise type_error
        else:
            for each in inputs:
                if not isinstance(each, Variable):
                    raise type_error
        return inputs

    def input(self, input_param_name='input'):
        inputs = self.multiple_input(input_param_name)
        if len(inputs) != 1:
            raise "{0} layer only takes one input".format(self.layer_type)
        return inputs[0]

    @property
    def param_attr(self):
Y
Yu Yang 已提交
71
        return ParamAttr.to_attr(self.kwargs.get('param_attr', None))
Y
Yu Yang 已提交
72

Q
QI JUN 已提交
73
    @property
Q
QI JUN 已提交
74
    def bias_attr(self):
Y
Yu Yang 已提交
75
        return ParamAttr.to_attr(self.kwargs.get('bias_attr', None))
Y
Yu Yang 已提交
76 77 78

    def multiple_param_attr(self, length):
        param_attr = self.param_attr
Y
Yu Yang 已提交
79
        if isinstance(param_attr, ParamAttr):
Y
Yu Yang 已提交
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
            param_attr = [param_attr]

        if len(param_attr) != 1 and len(param_attr) != length:
            raise ValueError("parameter number mismatch")
        elif len(param_attr) == 1 and length != 1:
            tmp = [None] * length
            for i in xrange(length):
                tmp[i] = copy.deepcopy(param_attr[0])
            param_attr = tmp
        return param_attr

    def iter_inputs_and_params(self, input_param_name='input'):
        inputs = self.multiple_input(input_param_name)
        param_attrs = self.multiple_param_attr(len(inputs))
        for ipt, param_attr in itertools.izip(inputs, param_attrs):
            yield ipt, param_attr

    def input_dtype(self, input_param_name='input'):
        inputs = self.multiple_input(input_param_name)
        dtype = None
        for each in inputs:
            if dtype is None:
F
fengjiayi 已提交
102 103
                dtype = each.dtype
            elif dtype != each.dtype:
Q
Qiao Longfei 已提交
104 105
                raise ValueError("Data Type mismatch: %d to %d" %
                                 (dtype, each.dtype))
Y
Yu Yang 已提交
106 107
        return dtype

G
guosheng 已提交
108 109 110 111 112 113 114 115 116 117 118 119 120
    def _create_weight_normalize(self, attr, shape, dtype):
        from .layers import elementwise_mul, elementwise_div, reshape

        # Remove these ops when LayerHelper and layers support indicating
        # program and block.
        def __norm_op(x,
                      out=None,
                      p=2,
                      dim=None,
                      keep_dim=False,
                      block=self.startup_program.global_block()):
            if out is None:
                out = block.create_var(
Y
Yu Yang 已提交
121 122
                    name=unique_name.generate(".".join(
                        [self.name, 'weight_norm_norm'])),
G
guosheng 已提交
123 124 125
                    dtype=dtype,
                    persistable=False)
            abs_out = block.create_var(
Y
Yu Yang 已提交
126 127
                name=unique_name.generate(".".join(
                    [self.name, 'weight_norm_abs'])),
G
guosheng 已提交
128 129 130 131 132
                dtype=dtype,
                persistable=False)
            block.append_op(
                type='abs', inputs={'X': x}, outputs={'Out': abs_out})
            pow_out = block.create_var(
Y
Yu Yang 已提交
133 134
                name=unique_name.generate(".".join(
                    [self.name, 'weight_norm_pow'])),
G
guosheng 已提交
135 136 137 138 139 140 141 142
                dtype=dtype,
                persistable=False)
            block.append_op(
                type='pow',
                inputs={'X': abs_out},
                outputs={'Out': pow_out},
                attrs={'factor': float(p)})
            sum_out = block.create_var(
Y
Yu Yang 已提交
143 144
                name=unique_name.generate(".".join(
                    [self.name, 'weight_norm_sum'])),
G
guosheng 已提交
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
                dtype=dtype,
                persistable=False)
            block.append_op(
                type='reduce_sum',
                inputs={'X': pow_out},
                outputs={'Out': sum_out},
                attrs={
                    'dim': dim,
                    'keep_dim': keep_dim,
                    'reduce_all': True if dim is None else False
                })
            block.append_op(
                type='pow',
                inputs={'X': sum_out},
                outputs={'Out': out},
                attrs={'factor': 1. / p})
            return out

        def __reshape_op(x,
                         shape,
                         out=None,
                         block=self.startup_program.global_block()):
            if out is None:
                out = block.create_var(
Y
Yu Yang 已提交
169
                    name=unique_name.generate(".".join(
G
guosheng 已提交
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
                        [self.name, 'weight_norm_reshape'])),
                    dtype=dtype,
                    persistable=False)
            block.append_op(
                type='reshape',
                inputs={'X': x},
                outputs={'Out': out},
                attrs={'shape': shape})
            return out

        def __transpose_op(x,
                           axis,
                           out=None,
                           block=self.startup_program.global_block()):
            if out is None:
                out = block.create_var(
Y
Yu Yang 已提交
186
                    name=unique_name.generate(".".join(
G
guosheng 已提交
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
                        [self.name, 'weight_norm_transpose'])),
                    dtype=dtype,
                    persistable=False)
            block.append_op(
                type='transpose',
                inputs={'X': x},
                outputs={'Out': out},
                attrs={'axis': axis})
            return out

        def __norm_except_dim(x,
                              out=None,
                              dim=None,
                              block=self.startup_program.global_block()):
            """Computes the norm over all dimensions except dim"""
            if out is None:
                out = block.create_var(
Y
Yu Yang 已提交
204 205
                    name=unique_name.generate(".".join(
                        [self.name, 'weight_norm_norm'])),
G
guosheng 已提交
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
                    dtype=dtype,
                    persistable=False)
            if dim is None:
                __norm_op(x, out, dim=dim, block=block)
            elif dim == 0:
                out_shape = [x.shape[0]] + [1] * (len(x.shape) - 1)
                reshape = __reshape_op(x, shape=[x.shape[0], -1], block=block)
                norm = __norm_op(reshape, dim=1, block=block)
                __reshape_op(norm, out=out, shape=out_shape, block=block)
            elif dim == len(x.shape) - 1:
                out_shape = [1] * (len(x.shape) - 1) + [x.shape[-1]]
                reshape = __reshape_op(x, shape=[-1, x.shape[-1]], block=block)
                norm = __norm_op(reshape, dim=0, block=block)
                __reshape_op(norm, out=out, shape=out_shape, block=block)
            else:
                perm = range(len(x.shape))
                perm[0], perm[dim] = dim, 0
                transpose = __transpose_op(x, perm, block=block)
                norm = __norm_op(transpose, dim=0, block=block)
                __transpose_op(norm, perm, out=out, block=block)
            return out

        def __weight_normalize(g, v, dim):
            """Calculations for weight normalization"""
            norm = __norm_except_dim(
                v, dim=dim, block=self.main_program.current_block())
            scale = elementwise_div(
                x=g, y=norm)  # The shapes of g and norm are the same.
            # Currently, elementwise_mul only support broadcast when the shape
235 236
            # of y is a subset of the shape of x. Thus, we reshape y to squeeze
            # to achive the subset.
G
guosheng 已提交
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
            w = elementwise_mul(
                x=v,
                y=scale if dim is None else reshape(
                    x=scale, shape=[v.shape[dim]]),
                axis=-1 if dim is None else dim)
            # To serialize the original parameter for inference, maybe a
            # parameter rather than a variable should be returned.
            return w

        g_param_attr = copy.deepcopy(attr)
        g_param_attr.name = attr.name + '_g'
        g_param_shape = [1] * len(shape)
        if attr.dim is not None:
            g_param_shape[attr.dim] = shape[attr.dim]
        v_param_attr = copy.deepcopy(attr)
        v_param_attr.name = attr.name + '_v'
        v_param_shape = shape

        # Add to startup_program to initialize g and v.
        # Try to reconstruct the initializer of w by initializing g and v.
        # Set the initializers of g and v as below, then the distribution
        # of w is the same as initializing w with the given initializer.
        # For Data-Dependent Initialization, please compute the init-values
        # of g and v in external and then feed the values to g and v by
        # executing an extra program.
        g_param = self.startup_program.global_block().create_parameter(
            dtype=dtype,
            shape=g_param_shape,
            **g_param_attr.to_kwargs(with_initializer=False))
        v_param = self.startup_program.global_block().create_parameter(
            dtype=dtype,
            shape=v_param_shape,
            **v_param_attr.to_kwargs(with_initializer=True))
        __norm_except_dim(
            x=v_param,
            out=g_param,
            dim=attr.dim,
            block=self.startup_program.global_block())

        # Add weight normalization to main_program
        g_param = self.main_program.global_block().create_parameter(
            dtype=dtype, shape=g_param_shape, **g_param_attr.to_kwargs())
        v_param = self.main_program.global_block().create_parameter(
            dtype=dtype, shape=v_param_shape, **v_param_attr.to_kwargs())
        w_param = __weight_normalize(g_param, v_param, dim=attr.dim)
        return w_param

Y
Yu Yang 已提交
284 285 286 287 288 289
    def create_parameter(self,
                         attr,
                         shape,
                         dtype,
                         is_bias=False,
                         default_initializer=None):
290
        # Deepcopy the attr so that parameters can be shared in program
291
        attr = copy.deepcopy(attr)
Y
Yu Yang 已提交
292 293
        assert isinstance(attr, ParamAttr)
        suffix = 'b' if is_bias else 'w'
G
guosheng 已提交
294
        if attr.name is None:
Y
Yu Yang 已提交
295
            attr.name = unique_name.generate(".".join([self.name, suffix]))
Y
Yu Yang 已提交
296

G
guosheng 已提交
297
        if default_initializer is None and attr.initializer is None:
Y
Yu Yang 已提交
298 299 300 301
            if is_bias:
                attr.set_default_bias_initializer()
            else:
                attr.set_default_param_initializer()
302
        else:
Y
Yu Yang 已提交
303
            attr.set_default_initializer(default_initializer)
G
guosheng 已提交
304 305 306 307 308 309 310

        # If weight normalization is set, insert extra parameters and ops.
        # Refer to https://arxiv.org/pdf/1602.07868.pdf
        if isinstance(attr, WeightNormParamAttr):
            param = self._create_weight_normalize(attr, shape, dtype)
            WeightNormParamAttr.params_with_weight_norm.append(param)
            return param
Y
Yu Yang 已提交
311

312
        self.startup_program.global_block().create_parameter(
Y
Yu Yang 已提交
313
            dtype=dtype, shape=shape, **attr.to_kwargs(with_initializer=True))
314
        return self.main_program.global_block().create_parameter(
Y
Yu Yang 已提交
315
            dtype=dtype, shape=shape, **attr.to_kwargs())
Y
Yu Yang 已提交
316

Q
Qiao Longfei 已提交
317 318 319 320 321 322
    def get_parameter(self, name):
        param = self.main_program.global_block().var(name)
        if not isinstance(param, Parameter):
            raise ValueError("no Parameter name %s found" % name)
        return param

Q
QI JUN 已提交
323
    def create_tmp_variable(self, dtype, stop_gradient=False):
324
        return self.main_program.current_block().create_var(
Y
Yu Yang 已提交
325
            name=unique_name.generate(".".join([self.name, 'tmp'])),
Q
QI JUN 已提交
326
            dtype=dtype,
Q
QI JUN 已提交
327 328
            persistable=False,
            stop_gradient=stop_gradient)
Y
Yu Yang 已提交
329

Y
Yu Yang 已提交
330
    def create_variable(self, *args, **kwargs):
331
        return self.main_program.current_block().create_var(*args, **kwargs)
Y
Yu Yang 已提交
332

Q
Qiao Longfei 已提交
333
    def create_global_variable(self, persistable=False, *args, **kwargs):
Y
Yu Yang 已提交
334 335 336 337 338 339 340 341 342
        """
        create global variable, note that there is no initializer for this global variable.
        Args:
            persistable(bool): True if it is a checkpoint value.
            *args: See create_var's documentation
            **kwargs: See create_var's documentation

        Returns(Variable): the created variable.
        """
343
        return self.main_program.global_block().create_var(
Q
Qiao Longfei 已提交
344 345
            *args, persistable=persistable, **kwargs)

Y
Yu Yang 已提交
346 347 348 349 350 351 352 353 354 355
    def create_or_get_global_variable(self, name, *args, **kwargs):
        """
        Creates a global variable if not exists and returns the variable and
        a boolean flag which is true when it is a new variable.
        """
        if self.main_program.global_block().has_var(name):
            return self.main_program.global_block().var(name), False
        else:
            return self.create_global_variable(name=name, *args, **kwargs), True

Q
Qiao Longfei 已提交
356 357
    def set_variable_initializer(self, var, initializer):
        assert isinstance(var, Variable)
358
        self.startup_program.global_block().create_var(
Q
Qiao Longfei 已提交
359 360
            name=var.name,
            type=var.type,
F
fengjiayi 已提交
361
            dtype=var.dtype,
Q
Qiao Longfei 已提交
362 363 364
            shape=var.shape,
            persistable=True,
            initializer=initializer)
Y
Yu Yang 已提交
365

Y
Yu Yang 已提交
366
    def append_bias_op(self, input_var, dim_start=1, dim_end=None):
367
        """
X
xuwei06 已提交
368
        Append bias operator and return its output. If the user does not set
369
        bias_attr, append_bias_op will return input_var
X
xuwei06 已提交
370

371 372 373 374
        :param input_var: the input variable. The len(input_var.shape) is
        larger or equal than 2.
        :bias_initializer: an instance of a subclass of Initializer used to
        initialize the bias
X
xuwei06 已提交
375 376
        :param dim_start:
        :param dim_end: the shape of the bias will be
X
xuwei06 已提交
377
        input_var.shape[dim_start:dim_end]. The bias is broadcasted to other
X
xuwei06 已提交
378
        dimensions and added to input_var to get the output
379
        """
X
xuwei06 已提交
380
        size = list(input_var.shape[dim_start:dim_end])
Q
QI JUN 已提交
381
        bias_attr = self.bias_attr
Y
Yu Yang 已提交
382 383
        if not bias_attr:
            return input_var
384

Y
Yu Yang 已提交
385
        b = self.create_parameter(
Y
Yu Yang 已提交
386
            attr=bias_attr, shape=size, dtype=input_var.dtype, is_bias=True)
F
fengjiayi 已提交
387
        tmp = self.create_tmp_variable(dtype=input_var.dtype)
Y
Yu Yang 已提交
388 389 390 391
        self.append_op(
            type='elementwise_add',
            inputs={'X': [input_var],
                    'Y': [b]},
X
xuwei06 已提交
392 393
            outputs={'Out': [tmp]},
            attrs={'axis': dim_start})
Y
Yu Yang 已提交
394 395 396 397 398 399 400 401
        return tmp

    def append_activation(self, input_var):
        act = self.kwargs.get('act', None)
        if act is None:
            return input_var
        if isinstance(act, basestring):
            act = {'type': act}
402 403 404

        if 'use_mkldnn' in self.kwargs:
            act['use_mkldnn'] = self.kwargs.get('use_mkldnn')
Y
Yu Yang 已提交
405
        act_type = act.pop('type')
406 407
        if 'use_mkldnn' in self.kwargs:
            act['use_mkldnn'] = self.kwargs.get('use_mkldnn')
D
dzhwinter 已提交
408 409 410 411
        tmp = input_var
        # NOTE(dzhwinter): some activation support inplace compution.
        if not core.IsInplace(act_type):
            tmp = self.create_tmp_variable(dtype=input_var.dtype)
Y
Yu Yang 已提交
412 413 414
        self.append_op(
            type=act_type,
            inputs={"X": [input_var]},
415
            outputs={"Out": [tmp]},
Y
Yu Yang 已提交
416
            attrs=act)
417
        return tmp
418 419 420

    def _get_default_initializer(self, dtype):
        if dtype is None or dtype_is_floating(dtype) is True:
421
            return Xavier()
422 423
        else:
            # For integer and boolean types, initialize with all zeros
424
            return Constant()
Y
Yang Yu 已提交
425 426 427 428 429 430

    def is_instance(self, param_name, cls):
        param = self.kwargs.get(param_name, None)
        if not isinstance(param, cls):
            raise TypeError("The input {0} parameter of method {1} must be {2}",
                            param_name, self.layer_type, cls.__name__)