sum_op.cc 12.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
12
#include "paddle/fluid/operators/sum_op.h"
13

14
#include <algorithm>
M
minqiyang 已提交
15
#include <memory>
16
#include <string>
17
#include <unordered_map>
18
#include <vector>
19

Y
Yi Wang 已提交
20
#include "paddle/fluid/framework/var_type_inference.h"
21

22 23 24
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
25
#include "paddle/fluid/framework/convert_utils.h"
26

27 28 29 30 31 32 33 34
namespace paddle {
namespace operators {
using framework::Tensor;

class SumOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

35
  void InferShape(framework::InferShapeContext* ctx) const override {
36 37
    OP_INOUT_CHECK(ctx->HasInputs("X"), "Input", "X", "sum");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "sum");
38 39 40

    if (ctx->IsRuntime() &&
        ctx->GetOutputsVarType("Out")[0] ==
41
            framework::proto::VarType::LOD_TENSOR_ARRAY) {
42 43
      return;  // skip runtime infershape when is tensor array;
    }
44

45
    auto x_var_types = ctx->GetInputsVarType("X");
46
    auto x_dims = ctx->GetInputsDim("X");
47

48 49
    auto N = x_dims.size();
    PADDLE_ENFORCE_GT(
50 51 52 53 54
        N, 0, platform::errors::InvalidArgument(
                  "The input tensor X's dimensions of SumOp "
                  "should be larger than 0. But received X's dimensions %d, "
                  "X's shape = [%s].",
                  N, &x_dims));
55
    if (N == 1) {
56
      VLOG(3) << "Warning: SumOp have only one input, may waste memory";
57
    }
Q
qiaolongfei 已提交
58

59
    framework::DDim in_dim({0});
60
    for (size_t i = 0; i < x_dims.size(); ++i) {
61 62 63 64
      auto& x_dim = x_dims[i];
      // x_dim.size() == 1 means the real dim of selected rows is [0]
      if (x_var_types[i] == framework::proto::VarType::SELECTED_ROWS &&
          x_dim.size() == 1) {
65 66
        continue;
      }
67 68 69 70 71 72
      if (framework::product(x_dim) == 0) {
        continue;
      }
      if (framework::product(in_dim) == 0) {
        in_dim = x_dim;
      } else {
Z
zhaoyuchen 已提交
73
        if (ctx->IsRuntime()) {
74 75 76 77 78 79
          PADDLE_ENFORCE_EQ(in_dim, x_dim,
                            platform::errors::InvalidArgument(
                                "The input tensor X of SumOp must"
                                " have same shape. But received X[0]'s shape = "
                                "[%s], X[%d]'s shape = [%s].",
                                in_dim, i, x_dim));
Z
zhaoyuchen 已提交
80
        } else {
81 82
          PADDLE_ENFORCE_EQ(
              in_dim.size(), x_dim.size(),
83 84 85 86 87 88
              platform::errors::InvalidArgument(
                  "The input tensor X of SumOp must have same "
                  "dimensions. But received X[0]'s dimensions = %d, X[0]'s "
                  "shape = "
                  "[%s], X[%d]'s dimensions = %d, X[%d]'s shape = [%s].",
                  in_dim.size(), in_dim, i, x_dim.size(), i, x_dim));
Z
zhaoyuchen 已提交
89
          // if in_dim or x_dim has -1, not check equal
90 91
          for (int j = 0; j < x_dim.size(); ++j) {
            if (x_dim[j] == -1 || in_dim[j] == -1) {
Z
zhaoyuchen 已提交
92 93
              continue;
            }
94 95
            PADDLE_ENFORCE_EQ(
                in_dim[j], x_dim[j],
96 97 98 99 100
                platform::errors::InvalidArgument(
                    "The input tensor X of SumOp must have same shape "
                    "if not -1."
                    "But received X[0]'s shape = [%s], X[%d]'s shape = [%s].",
                    in_dim, i, x_dim));
Z
zhaoyuchen 已提交
101 102
          }
        }
103
      }
Q
qijun 已提交
104
    }
Q
Qiao Longfei 已提交
105 106
    ctx->SetOutputDim("Out", in_dim);
    ctx->ShareLoD("X", /*->*/ "Out");
107
  }
108 109

 protected:
110
  framework::OpKernelType GetExpectedKernelType(
111 112
      const framework::ExecutionContext& ctx) const override {
    auto x_vars = ctx.MultiInputVar("X");
H
hong 已提交
113
    auto x_vars_name = ctx.InputNames("X");
114 115 116 117

    framework::LibraryType library{framework::LibraryType::kPlain};
    framework::DataLayout layout{framework::DataLayout::kAnyLayout};

L
Leo Chen 已提交
118 119 120 121 122 123 124
    PADDLE_ENFORCE_GT(x_vars.size(), 0, platform::errors::InvalidArgument(
                                            "Input[X] should not be empty"));

    PADDLE_ENFORCE_NOT_NULL(
        x_vars[0], platform::errors::NotFound(
                       "Input var[%s] should not be nullptr", x_vars_name[0]));

125
    if (x_vars[0]->IsType<framework::LoDTensor>()) {
126
      int dtype = -1;
C
chengduo 已提交
127
      for (size_t idx = 0; idx < x_vars.size(); ++idx) {
128 129 130 131
        PADDLE_ENFORCE_NOT_NULL(
            x_vars[idx],
            platform::errors::NotFound("Input var[%s] should not be nullptr",
                                       x_vars_name[idx]));
C
chengduo 已提交
132 133
        auto tensor =
            framework::GetLoDTensorOrSelectedRowsValueFromVar(*x_vars[idx]);
134
        if (tensor->numel() <= 0 || (!tensor->IsInitialized())) {
135 136 137
          continue;
        }
        if (dtype == -1) {
138
          dtype = framework::TransToProtoVarType(tensor->dtype());
139
        } else {
140 141
          PADDLE_ENFORCE_EQ(dtype,
                            framework::TransToProtoVarType(tensor->dtype()),
142 143
                            platform::errors::InvalidArgument(
                                "The inputs type of sum op must be same"));
144 145 146
        }
      }
      PADDLE_ENFORCE_NE(dtype, -1,
147 148
                        platform::errors::InvalidArgument(
                            "Sum operator should have at least one tensor"));
149

150
      auto data_type = static_cast<framework::proto::VarType::Type>(dtype);
151 152
#ifdef PADDLE_WITH_MKLDNN
      if (library == framework::LibraryType::kPlain &&
153 154 155
          this->CanMKLDNNBeUsed(ctx, data_type) &&
          (data_type == framework::proto::VarType::FP32 ||
           data_type == framework::proto::VarType::BF16) &&
156 157 158 159 160
          ctx.OutputVar("Out")->IsType<framework::LoDTensor>()) {
        if (std::all_of(x_vars.begin(), x_vars.end(),
                        [](const framework::Variable* v) {
                          return v->IsType<framework::LoDTensor>();
                        })) {
161 162 163
          return framework::OpKernelType(data_type, ctx.GetPlace(),
                                         framework::DataLayout::kMKLDNN,
                                         framework::LibraryType::kMKLDNN);
164 165 166 167
        }
      }
#endif

168 169
      return framework::OpKernelType(data_type, ctx.GetPlace(), layout,
                                     library);
170
    } else if (x_vars[0]->IsType<pten::SelectedRows>()) {
171
      for (auto& var : x_vars) {
172
        auto& value = var->Get<pten::SelectedRows>().value();
173
        if (value.IsInitialized()) {
174 175 176
          return framework::OpKernelType(
              framework::TransToProtoVarType(value.dtype()),
              ctx.device_context(), layout, library);
177 178 179 180
        }
      }
      // if input sparse vars are not initialized, use an default kernel type.
      return framework::OpKernelType(framework::proto::VarType::FP32,
181
                                     ctx.device_context(), layout, library);
182
    } else if (x_vars[0]->IsType<framework::LoDTensorArray>()) {
Y
Yang Yang(Tony) 已提交
183 184 185
      for (auto& x_var : x_vars) {
        auto& array = x_var->Get<framework::LoDTensorArray>();
        for (auto& each : array) {
186
          if (each.numel() != 0 && each.IsInitialized()) {
187 188 189
            return framework::OpKernelType(
                framework::TransToProtoVarType(each.dtype()),
                ctx.device_context(), layout, library);
Y
Yang Yang(Tony) 已提交
190
          }
191 192
        }
      }
193 194 195 196 197
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Expected each tensor in Input(x) in sum op has be initialized, but "
          "some tensor in Input(x) is not be initialized, please check your "
          "code.",
          framework::ToTypeName(x_vars[0]->Type())));
198
    }
199 200 201 202 203
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Expected type of Input(X) must be Tensor,  SelectedRows or "
        "LodTensorArray. But got "
        "unsupport type: %s.",
        framework::ToTypeName(x_vars[0]->Type())));
204
  }
205 206 207 208
};

class SumOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
209
  void Make() override {
210 211 212 213 214
    AddInput("X",
             "A Varaible list. The shape and data type of the list elements"
             "should be consistent. Variable can be multi-dimensional Tensor"
             "or LoDTensor, and data types can be: float32, float64, int32, "
             "int64.")
215
        .AsDuplicable();
216 217 218
    AddOutput("Out",
              "the sum of input :code:`x`. its shape and data types are "
              "consistent with :code:`x`.");
219 220 221
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
        .SetDefault(false);
J
Jacek Czaja 已提交
222 223 224 225 226
    AddAttr<std::string>(
        "mkldnn_data_type",
        "(string, default \"float32\"). Data type of mkldnn kernel")
        .SetDefault("float32")
        .InEnum({"float32", "bfloat16"});
227 228 229
    AddComment(R"DOC(This OP is used to sum one or more Tensor or LoDTensor
                    of the input. If the input is LoDTensor, the output only
                    shares LoD information with the first input.)DOC");
230 231 232
  }
};

Q
QI JUN 已提交
233 234
class SumOpVarTypeInference : public framework::VarTypeInference {
 public:
M
minqiyang 已提交
235
  void operator()(framework::InferVarTypeContext* ctx) const override {
236 237 238 239 240 241 242 243
    if (!ctx->IsDygraph()) {
      auto var_type = framework::proto::VarType::SELECTED_ROWS;
      if (VLOG_IS_ON(10)) {
        for (size_t ind = 0; ind < ctx->InputSize("X"); ++ind) {
          VLOG(10) << ctx->InputVarName("X", ind) << " "
                   << ctx->GetInputType("X", ind);
        }
      }
244

245 246 247 248 249 250 251 252 253 254 255
      if (ctx->InputTypeAnyOf("X",
                              framework::proto::VarType::LOD_TENSOR_ARRAY)) {
        if (!ctx->InputTypeAllOf("X",
                                 framework::proto::VarType::LOD_TENSOR_ARRAY)) {
          std::ostringstream os;
          for (size_t ind = 0; ind < ctx->InputSize("X"); ++ind) {
            os << "    " << ctx->InputVarName("X", ind) << " type is "
               << ctx->GetInputType("X", ind) << "\n";
          }
          PADDLE_THROW(platform::errors::InvalidArgument(
              "Not all inputs are tensor array:\n%s", os.str()));
Y
Yang Yang(Tony) 已提交
256
        }
257 258 259 260
        var_type = framework::proto::VarType::LOD_TENSOR_ARRAY;
      } else if (ctx->InputTypeAnyOf("X",
                                     framework::proto::VarType::LOD_TENSOR)) {
        var_type = framework::proto::VarType::LOD_TENSOR;
Y
Yang Yang(Tony) 已提交
261
      }
Q
QI JUN 已提交
262

263 264 265
      ctx->SetOutputType("Out", var_type);
      ctx->SetOutputDataType("Out", ctx->GetInputDataType("X"));
    }
Q
QI JUN 已提交
266 267 268
  }
};

H
hong 已提交
269
class SumGradDescMaker : public framework::GradOpDescMakerBase {
270
 public:
271
  using framework::GradOpDescMakerBase::GradOpDescMakerBase;
272

Y
Yu Yang 已提交
273
  std::vector<std::unique_ptr<framework::OpDesc>> operator()() const override {
274
    auto x_grads = InputGrad("X", false);
Y
Yu Yang 已提交
275
    std::vector<std::unique_ptr<framework::OpDesc>> grad_ops;
276 277 278 279
    grad_ops.reserve(x_grads.size());
    auto og = OutputGrad("Out");
    std::transform(x_grads.begin(), x_grads.end(), std::back_inserter(grad_ops),
                   [&og](const std::string& x_grad) {
Y
Yu Yang 已提交
280
                     auto* grad_op = new framework::OpDesc();
Y
Yu Yang 已提交
281 282 283 284
                     grad_op->SetType("scale");
                     grad_op->SetInput("X", og);
                     grad_op->SetOutput("Out", {x_grad});
                     grad_op->SetAttr("scale", 1.0f);
Y
Yu Yang 已提交
285
                     return std::unique_ptr<framework::OpDesc>(grad_op);
286
                   });
H
hong 已提交
287 288 289 290 291 292 293 294 295

    return grad_ops;
  }
};

class SumGradOpBaseMaker : public imperative::GradOpBaseMakerBase {
 public:
  using imperative::GradOpBaseMakerBase::GradOpBaseMakerBase;

296
  std::shared_ptr<imperative::GradOpNode> operator()() const override {
H
hong 已提交
297
    auto x_grads = InputGrad("X", false);
298 299
    using InputGradsType = decltype(x_grads);

300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
    if (!x_grads.empty()) {
      auto node = this->NewGradNode();
      node->reserve(x_grads.size());
      auto og = OutputGrad("Out");
      for (auto& x_grad : x_grads) {
        imperative::TracedGradOp op(node);
        op.SetType("scale");
        op.SetInput("X", og);
        op.SetOutput("Out", InputGradsType{x_grad});
        op.SetAttr("scale", 1.0f);
      }
      return node;
    } else {
      return nullptr;
    }
315 316 317
  }
};

318
DECLARE_INPLACE_OP_INFERER(SumInplaceInferer, {"X", "Out"});
319

320 321 322 323
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
324

H
hong 已提交
325 326
REGISTER_OPERATOR(sum, ops::SumOp, ops::SumOpMaker, ops::SumGradDescMaker,
                  ops::SumGradOpBaseMaker, ops::SumOpVarTypeInference,
327
                  ops::SumInplaceInferer);
328

Q
QI JUN 已提交
329 330 331 332
REGISTER_OP_CPU_KERNEL(
    sum, ops::SumKernel<paddle::platform::CPUDeviceContext, float>,
    ops::SumKernel<paddle::platform::CPUDeviceContext, double>,
    ops::SumKernel<paddle::platform::CPUDeviceContext, int>,
333 334
    ops::SumKernel<paddle::platform::CPUDeviceContext,
                   paddle::platform::bfloat16>,
Q
QI JUN 已提交
335
    ops::SumKernel<paddle::platform::CPUDeviceContext, int64_t>);