deep_speech_2.html 26.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171


<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
  <meta charset="utf-8">
  
  <meta name="viewport" content="width=device-width, initial-scale=1.0">
  
  <title>DeepSpeech2 on PaddlePaddle: Design Doc &mdash; PaddlePaddle  文档</title>
  

  
  

  

  
  
    

  

  
  
    <link rel="stylesheet" href="../../_static/css/theme.css" type="text/css" />
  

  
  
        <link rel="index" title="索引"
              href="../../genindex.html"/>
        <link rel="search" title="搜索" href="../../search.html"/>
    <link rel="top" title="PaddlePaddle  文档" href="../../index.html"/> 

  <link rel="stylesheet" href="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/css/perfect-scrollbar.min.css" type="text/css" />
  <link rel="stylesheet" href="../../_static/css/override.css" type="text/css" />
  <script>
  var _hmt = _hmt || [];
  (function() {
    var hm = document.createElement("script");
    hm.src = "//hm.baidu.com/hm.js?b9a314ab40d04d805655aab1deee08ba";
    var s = document.getElementsByTagName("script")[0]; 
    s.parentNode.insertBefore(hm, s);
  })();
  </script>

  

  
  <script src="../../_static/js/modernizr.min.js"></script>

</head>

<body class="wy-body-for-nav" role="document">

  
  <header class="site-header">
    <div class="site-logo">
      <a href="/"><img src="../../_static/images/PP_w.png"></a>
    </div>
    <div class="site-nav-links">
      <div class="site-menu">
        <a class="fork-on-github" href="https://github.com/PaddlePaddle/Paddle" target="_blank"><i class="fa fa-github"></i>Fork me on Github</a>
        <div class="language-switcher dropdown">
          <a type="button" data-toggle="dropdown">
            <span>English</span>
            <i class="fa fa-angle-up"></i>
            <i class="fa fa-angle-down"></i>
          </a>
          <ul class="dropdown-menu">
            <li><a href="/doc_cn">中文</a></li>
            <li><a href="/doc">English</a></li>
          </ul>
        </div>
        <ul class="site-page-links">
          <li><a href="/">Home</a></li>
        </ul>
      </div>
      <div class="doc-module">
        
        <ul>
<li class="toctree-l1"><a class="reference internal" href="../../getstarted/index_cn.html">新手入门</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../howto/index_cn.html">进阶指南</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../api/index_cn.html">API</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../faq/index_cn.html">FAQ</a></li>
</ul>

        
<div role="search">
  <form id="rtd-search-form" class="wy-form" action="../../search.html" method="get">
    <input type="text" name="q" placeholder="Search docs" />
    <input type="hidden" name="check_keywords" value="yes" />
    <input type="hidden" name="area" value="default" />
  </form>
</div>        
      </div>
    </div>
  </header>
  
  <div class="main-content-wrap">

    
    <nav class="doc-menu-vertical" role="navigation">
        
          
          <ul>
<li class="toctree-l1"><a class="reference internal" href="../../getstarted/index_cn.html">新手入门</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../../getstarted/build_and_install/index_cn.html">安装与编译</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../getstarted/build_and_install/pip_install_cn.html">使用pip安装</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../getstarted/build_and_install/docker_install_cn.html">使用Docker安装运行</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../howto/dev/build_cn.html">用Docker编译和测试PaddlePaddle</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../getstarted/build_and_install/build_from_source_cn.html">从源码编译</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../../getstarted/concepts/use_concepts_cn.html">基本使用概念</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../howto/index_cn.html">进阶指南</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../../howto/usage/cmd_parameter/index_cn.html">设置命令行参数</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../howto/usage/cmd_parameter/use_case_cn.html">使用案例</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../howto/usage/cmd_parameter/arguments_cn.html">参数概述</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../howto/usage/cmd_parameter/detail_introduction_cn.html">细节描述</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../../howto/usage/cluster/cluster_train_cn.html">分布式训练</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../howto/usage/cluster/fabric_cn.html">fabric集群</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../howto/usage/cluster/openmpi_cn.html">openmpi集群</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../howto/usage/cluster/k8s_cn.html">kubernetes单机</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../howto/usage/cluster/k8s_distributed_cn.html">kubernetes distributed分布式</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../howto/usage/cluster/k8s_aws_cn.html">AWS上运行kubernetes集群训练</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../../howto/usage/capi/index_cn.html">PaddlePaddle C-API</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../howto/usage/capi/compile_paddle_lib_cn.html">编译 PaddlePaddle 预测库</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../howto/usage/capi/organization_of_the_inputs_cn.html">输入/输出数据组织</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../howto/usage/capi/workflow_of_capi_cn.html">C-API 使用流程</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../../howto/dev/contribute_to_paddle_cn.html">如何贡献代码</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../howto/dev/write_docs_cn.html">如何贡献/修改文档</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../howto/deep_model/rnn/index_cn.html">RNN相关模型</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../howto/deep_model/rnn/rnn_config_cn.html">RNN配置</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../howto/deep_model/rnn/recurrent_group_cn.html">Recurrent Group教程</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../howto/deep_model/rnn/hierarchical_layer_cn.html">支持双层序列作为输入的Layer</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../howto/deep_model/rnn/hrnn_rnn_api_compare_cn.html">单双层RNN API对比介绍</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../../howto/optimization/gpu_profiling_cn.html">GPU性能分析与调优</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../api/index_cn.html">API</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../../api/v2/model_configs.html">模型配置</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/activation.html">Activation</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/layer.html">Layers</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/evaluators.html">Evaluators</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/optimizer.html">Optimizer</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/pooling.html">Pooling</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/networks.html">Networks</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/attr.html">Parameter Attribute</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../../api/v2/data.html">数据访问</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/data/data_reader.html">Data Reader Interface</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/data/image.html">Image Interface</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/data/dataset.html">Dataset</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../../api/v2/run_logic.html">训练与应用</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../api/v2/fluid.html">Fluid</a><ul>
172 173 174 175 176 177 178 179 180 181 182
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/fluid/layers.html">layers</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/fluid/data_feeder.html">data_feeder</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/fluid/executor.html">executor</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/fluid/initializer.html">initializer</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/fluid/evaluator.html">evaluator</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/fluid/nets.html">nets</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/fluid/optimizer.html">optimizer</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/fluid/param_attr.html">param_attr</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/fluid/profiler.html">profiler</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/fluid/regularizer.html">regularizer</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/fluid/io.html">io</a></li>
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
</ul>
</li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../faq/index_cn.html">FAQ</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../../faq/build_and_install/index_cn.html">编译安装与单元测试</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../faq/model/index_cn.html">模型配置</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../faq/parameter/index_cn.html">参数设置</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../faq/local/index_cn.html">本地训练与预测</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../faq/cluster/index_cn.html">集群训练与预测</a></li>
</ul>
</li>
</ul>

        
    </nav>
    
    <section class="doc-content-wrap">

      

 







<div role="navigation" aria-label="breadcrumbs navigation">
  <ul class="wy-breadcrumbs">
      
    <li>DeepSpeech2 on PaddlePaddle: Design Doc</li>
  </ul>
</div>
      
      <div class="wy-nav-content" id="doc-content">
        <div class="rst-content">
          <div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
           <div itemprop="articleBody">
            
  <div class="section" id="deepspeech2-on-paddlepaddle-design-doc">
<span id="deepspeech2-on-paddlepaddle-design-doc"></span><h1>DeepSpeech2 on PaddlePaddle: Design Doc<a class="headerlink" href="#deepspeech2-on-paddlepaddle-design-doc" title="永久链接至标题"></a></h1>
<p>We are planning to build Deep Speech 2 (DS2) [<a class="reference external" href="#references">1</a>], a powerful Automatic Speech Recognition (ASR) engine,  on PaddlePaddle. For the first-stage plan, we have the following short-term goals:</p>
<ul class="simple">
<li>Release a basic distributed implementation of DS2 on PaddlePaddle.</li>
<li>Contribute a chapter of Deep Speech to PaddlePaddle Book.</li>
</ul>
<p>Intensive system optimization and low-latency inference library (details in [<a class="reference external" href="#references">1</a>]) are not yet covered in this first-stage plan.</p>
<div class="section" id="table-of-contents">
<span id="table-of-contents"></span><h2>Table of Contents<a class="headerlink" href="#table-of-contents" title="永久链接至标题"></a></h2>
<ul class="simple">
<li><a class="reference external" href="#tasks">Tasks</a></li>
<li><a class="reference external" href="#task-dependency">Task Dependency</a></li>
<li><a class="reference external" href="#design-details">Design Details</a><ul>
<li><a class="reference external" href="#overview">Overview</a></li>
<li><a class="reference external" href="#row-convolution">Row Convolution</a></li>
<li><a class="reference external" href="#beam-search-with-ctc-and-lm">Beam Search With CTC and LM</a></li>
</ul>
</li>
<li><a class="reference external" href="#future-work">Future Work</a></li>
<li><a class="reference external" href="#references">References</a></li>
</ul>
</div>
<div class="section" id="tasks">
<span id="tasks"></span><h2>Tasks<a class="headerlink" href="#tasks" title="永久链接至标题"></a></h2>
<p>We roughly break down the project into 14 tasks:</p>
<ol class="simple">
<li>Develop an <strong>audio data provider</strong>:<ul>
<li>Json filelist generator.</li>
<li>Audio file format transformer.</li>
<li>Spectrogram feature extraction, power normalization etc.</li>
<li>Batch data reader with SortaGrad.</li>
<li>Data augmentation (optional).</li>
<li>Prepare (one or more) public English data sets &amp; baseline.</li>
</ul>
</li>
<li>Create a <strong>simplified DS2 model configuration</strong>:<ul>
<li>With only fixed-length (by padding) audio sequences (otherwise need <em>Task 3</em>).</li>
<li>With only bidirectional-GRU (otherwise need <em>Task 4</em>).</li>
<li>With only greedy decoder (otherwise need <em>Task 5, 6</em>).</li>
</ul>
</li>
<li>Develop to support <strong>variable-shaped</strong> dense-vector (image) batches of input data.<ul>
<li>Update <code class="docutils literal"><span class="pre">DenseScanner</span></code> in <code class="docutils literal"><span class="pre">dataprovider_converter.py</span></code>, etc.</li>
</ul>
</li>
<li>Develop a new <strong>lookahead-row-convolution layer</strong> (See [<a class="reference external" href="#references">1</a>] for details):<ul>
<li>Lookahead convolution windows.</li>
<li>Within-row convolution, without kernels shared across rows.</li>
</ul>
</li>
<li>Build KenLM <strong>language model</strong> (5-gram) for beam search decoder:<ul>
<li>Use KenLM toolkit.</li>
<li>Prepare the corpus &amp; train the model.</li>
<li>Create infererence interfaces (for Task 6).</li>
</ul>
</li>
<li>Develop a <strong>beam search decoder</strong> with CTC + LM + WORDCOUNT:<ul>
<li>Beam search with CTC.</li>
<li>Beam search with external custom scorer (e.g. LM).</li>
<li>Try to design a more general beam search interface.</li>
</ul>
</li>
<li>Develop a <strong>Word Error Rate evaluator</strong>:<ul>
<li>update <code class="docutils literal"><span class="pre">ctc_error_evaluator</span></code>(CER) to support WER.</li>
</ul>
</li>
<li>Prepare internal dataset for Mandarin (optional):<ul>
<li>Dataset, baseline, evaluation details.</li>
<li>Particular data preprocessing for Mandarin.</li>
<li>Might need cooperating with the Speech Department.</li>
</ul>
</li>
<li>Create <strong>standard DS2 model configuration</strong>:<ul>
<li>With variable-length audio sequences (need <em>Task 3</em>).</li>
<li>With unidirectional-GRU + row-convolution (need <em>Task 4</em>).</li>
<li>With CTC-LM beam search decoder (need <em>Task 5, 6</em>).</li>
</ul>
</li>
<li>Make it run perfectly on <strong>clusters</strong>.</li>
<li>Experiments and <strong>benchmarking</strong> (for accuracy, not efficiency):<ul>
<li>With public English dataset.</li>
<li>With internal (Baidu) Mandarin dataset (optional).</li>
</ul>
</li>
<li>Time <strong>profiling</strong> and optimization.</li>
<li>Prepare <strong>docs</strong>.</li>
<li>Prepare PaddlePaddle <strong>Book</strong> chapter with a simplified version.</li>
</ol>
</div>
<div class="section" id="task-dependency">
<span id="task-dependency"></span><h2>Task Dependency<a class="headerlink" href="#task-dependency" title="永久链接至标题"></a></h2>
<p>Tasks parallelizable within phases:</p>
<p>Roadmap     | Description                               | Parallelizable Tasks
&#8212;&#8212;&#8212;&#8211; | :&#8212;&#8212;&#8212;&#8212;&#8212;&#8212;&#8212;&#8212;&#8212;&#8212;&#8212;&#8212;     | :&#8212;&#8212;&#8212;&#8212;&#8212;&#8212;&#8211;
Phase I     | Simplified model &amp; components             | <em>Task 1</em> ~ <em>Task 8</em>
Phase II    | Standard model &amp; benchmarking &amp; profiling | <em>Task 9</em> ~ <em>Task 12</em>
Phase III   | Documentations                            | <em>Task13</em> ~ <em>Task14</em></p>
<p>Issue for each task will be created later. Contributions, discussions and comments are all highly appreciated and welcomed!</p>
</div>
<div class="section" id="design-details">
<span id="design-details"></span><h2>Design Details<a class="headerlink" href="#design-details" title="永久链接至标题"></a></h2>
<div class="section" id="overview">
<span id="overview"></span><h3>Overview<a class="headerlink" href="#overview" title="永久链接至标题"></a></h3>
<p>Traditional <strong>ASR</strong> (Automatic Speech Recognition) pipelines require great human efforts devoted to elaborately tuning multiple hand-engineered components (e.g. audio feature design, accoustic model, pronuncation model and language model etc.). <strong>Deep Speech 2</strong> (<strong>DS2</strong>) [<a class="reference external" href="#references">1</a>], however, trains such ASR models in an end-to-end manner, replacing most intermediate modules with only a single deep network architecture. With scaling up both the data and model sizes, DS2 achieves a very significant performance boost.</p>
<p>Please read Deep Speech 2 [<a class="reference external" href="#references">1</a>,<a class="reference external" href="#references">2</a>] paper for more background knowledge.</p>
<p>The classical DS2 network contains 15 layers (from bottom to top):</p>
<ul class="simple">
<li><strong>Two</strong> data layers (audio spectrogram, transcription text)</li>
<li><strong>Three</strong> 2D convolution layers</li>
<li><strong>Seven</strong> uni-directional simple-RNN layers</li>
<li><strong>One</strong> lookahead row convolution layers</li>
<li><strong>One</strong> fully-connected layers</li>
<li><strong>One</strong> CTC-loss layer</li>
</ul>
<div align="center">
<img src="image/ds2_network.png" width=350><br/>
Figure 1. Archetecture of Deep Speech 2 Network.
</div><p>We don&#8217;t have to persist on this 2-3-7-1-1-1 depth [<a class="reference external" href="#references">2</a>]. Similar networks with different depths might also work well. As in [<a class="reference external" href="#references">1</a>], authors use a different depth (e.g. 2-2-3-1-1-1) for final experiments.</p>
<p>Key ingredients about the layers:</p>
<ul class="simple">
<li><strong>Data Layers</strong>:<ul>
<li>Frame sequences data of audio <strong>spectrogram</strong> (with FFT).</li>
<li>Token sequences data of <strong>transcription</strong> text (labels).</li>
<li>These two type of sequences do not have the same lengthes, thus a CTC-loss layer is required.</li>
</ul>
</li>
<li><strong>2D Convolution Layers</strong>:<ul>
<li>Not only temporal convolution, but also <strong>frequency convolution</strong>. Like a 2D image convolution, but with a variable dimension (i.e. temporal dimension).</li>
<li>With striding for only the first convlution layer.</li>
<li>No pooling for all convolution layers.</li>
</ul>
</li>
<li><strong>Uni-directional RNNs</strong><ul>
<li>Uni-directional + row convolution: for low-latency inference.</li>
<li>Bi-direcitional + without row convolution: if we don&#8217;t care about the inference latency.</li>
</ul>
</li>
<li><strong>Row convolution</strong>:<ul>
<li>For looking only a few steps ahead into the feature, instead of looking into a whole sequence in bi-directional RNNs.</li>
<li>Not nessesary if with bi-direcitional RNNs.</li>
<li>&#8220;<strong>Row</strong>&#8221; means convolutions are done within each frequency dimension (row), and no convolution kernels shared across.</li>
</ul>
</li>
<li><strong>Batch Normalization Layers</strong>:<ul>
<li>Added to all above layers (except for data and loss layer).</li>
<li>Sequence-wise normalization for RNNs: BatchNorm only performed on input-state projection and not state-state projection, for efficiency consideration.</li>
</ul>
</li>
</ul>
<p>Required Components                     | PaddlePaddle Support                      | Need to Develop
:&#8212;&#8212;&#8212;&#8212;&#8212;&#8212;&#8212;&#8212;&#8212;&#8212;&#8212;&#8212;-  | :&#8212;&#8212;&#8212;&#8212;&#8212;&#8212;&#8212;&#8212;&#8212;&#8212;&#8212;&#8212;&#8211;   | :&#8212;&#8212;&#8212;&#8212;&#8212;&#8212;&#8212;&#8211;
Data Layer I (Spectrogram)              | Not supported yet.                        |  TBD (Task 3)
Data Layer II (Transcription)           | <code class="docutils literal"><span class="pre">paddle.data_type.integer_value_sequence</span></code> | -
2D Convolution Layer                    | <code class="docutils literal"><span class="pre">paddle.layer.image_conv_layer</span></code>           | -
DataType Converter (vec2seq)            | <code class="docutils literal"><span class="pre">paddle.layer.block_expand</span></code>               | -
Bi-/Uni-directional RNNs                | <code class="docutils literal"><span class="pre">paddle.layer.recurrent_group</span></code>            | -
Row Convolution Layer                   | Not supported yet.                        | TBD (Task 4)
CTC-loss Layer                          | <code class="docutils literal"><span class="pre">paddle.layer.warp_ctc</span></code>                   | -
Batch Normalization Layer               | <code class="docutils literal"><span class="pre">paddle.layer.batch_norm</span></code>                 | -
CTC-Beam search                         | Not supported yet.                        | TBD (Task 6)</p>
</div>
<div class="section" id="row-convolution">
<span id="row-convolution"></span><h3>Row Convolution<a class="headerlink" href="#row-convolution" title="永久链接至标题"></a></h3>
<p>TODO by Assignees</p>
</div>
<div class="section" id="beam-search-with-ctc-and-lm">
<span id="beam-search-with-ctc-and-lm"></span><h3>Beam Search with CTC and LM<a class="headerlink" href="#beam-search-with-ctc-and-lm" title="永久链接至标题"></a></h3>
<div align="center">
<img src="image/beam_search.png" width=600><br/>
Figure 2. Algorithm for CTC Beam Search Decoder.
</div><ul class="simple">
<li>The <strong>Beam Search Decoder</strong> for DS2 CTC-trained network follows the similar approach in [<a class="reference external" href="#references">3</a>] as shown in Figure 2, with two important modifications for the ambiguous parts:<ul>
<li><ol class="first">
<li>in the iterative computation of probabilities, the assignment operation is changed to accumulation for one prefix may comes from different paths;</li>
</ol>
</li>
<li><ol class="first">
<li>the if condition <code class="docutils literal"><span class="pre">if</span> <span class="pre">l^+</span> <span class="pre">not</span> <span class="pre">in</span> <span class="pre">A_prev</span> <span class="pre">then</span></code> after probabilities&#8217; computation is deprecated for it is hard to understand and seems unnecessary.</li>
</ol>
</li>
</ul>
</li>
<li>An <strong>external scorer</strong> would be passed into the decoder to evaluate a candidate prefix during decoding whenever a white space appended in English decoding and any character appended in Mandarin decoding.</li>
<li>Such external scorer consists of language model, word count or any other custom scorers.</li>
<li>The <strong>language model</strong> is built from Task 5, with parameters should be carefully tuned to achieve minimum WER/CER (c.f. Task 7)</li>
<li>This decoder needs to perform with <strong>high efficiency</strong> for the convenience of parameters tuning and speech recognition in reality.</li>
</ul>
</div>
</div>
<div class="section" id="future-work">
<span id="future-work"></span><h2>Future Work<a class="headerlink" href="#future-work" title="永久链接至标题"></a></h2>
<ul class="simple">
<li>Efficiency Improvement</li>
<li>Accuracy Improvement</li>
<li>Low-latency Inference Library</li>
<li>Large-scale benchmarking</li>
</ul>
</div>
<div class="section" id="references">
<span id="references"></span><h2>References<a class="headerlink" href="#references" title="永久链接至标题"></a></h2>
<ol class="simple">
<li>Dario Amodei, etc., <a class="reference external" href="http://proceedings.mlr.press/v48/amodei16.pdf">Deep Speech 2 : End-to-End Speech Recognition in English and Mandarin</a>. ICML 2016.</li>
<li>Dario Amodei, etc., <a class="reference external" href="https://arxiv.org/abs/1512.02595">Deep Speech 2 : End-to-End Speech Recognition in English and Mandarin</a>.   arXiv:1512.02595.</li>
<li>Awni Y. Hannun, etc. <a class="reference external" href="https://arxiv.org/abs/1408.2873">First-Pass Large Vocabulary Continuous Speech Recognition using Bi-Directional Recurrent DNNs</a>. arXiv:1408.2873</li>
</ol>
</div>
</div>


           </div>
          </div>
          <footer>
  

  <hr/>

  <div role="contentinfo">
    <p>
        &copy; Copyright 2016, PaddlePaddle developers.

    </p>
  </div>
  Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>. 

</footer>

        </div>
      </div>

    </section>

  </div>
  


  

    <script type="text/javascript">
        var DOCUMENTATION_OPTIONS = {
            URL_ROOT:'../../',
            VERSION:'',
            COLLAPSE_INDEX:false,
            FILE_SUFFIX:'.html',
            HAS_SOURCE:  true,
            SOURCELINK_SUFFIX: ".txt",
        };
    </script>
      <script type="text/javascript" src="../../_static/jquery.js"></script>
      <script type="text/javascript" src="../../_static/underscore.js"></script>
      <script type="text/javascript" src="../../_static/doctools.js"></script>
      <script type="text/javascript" src="../../_static/translations.js"></script>
      <script type="text/javascript" src="https://cdn.bootcss.com/mathjax/2.7.0/MathJax.js"></script>
       
  

  
  
    <script type="text/javascript" src="../../_static/js/theme.js"></script>
  
  
  <script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstrap.min.js" integrity="sha384-Tc5IQib027qvyjSMfHjOMaLkfuWVxZxUPnCJA7l2mCWNIpG9mGCD8wGNIcPD7Txa" crossorigin="anonymous"></script>
  <script src="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/js/perfect-scrollbar.jquery.min.js"></script>
  <script src="../../_static/js/paddle_doc_init.js"></script> 

</body>
</html>