roi_pool_op.cu 9.2 KB
Newer Older
W
wanghaox 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/platform/cuda_helper.h"
#include "paddle/operators/roi_pool_op.h"

namespace paddle {
namespace operators {

#define FLT_MAX __FLT_MAX__

constexpr int PADDLE_OPERATORS_ROIPOOL_CUDA_NUM_THREADS = 512;
constexpr int PADDLE_OPERATORS_ROIPOOL_MAXIMUM_NUM_BLOCKS = 4096;

inline int PADDLE_OPERATORS_ROIPOOL_GET_BLOCKS(const int N) {
  return std::min((N + PADDLE_OPERATORS_ROIPOOL_CUDA_NUM_THREADS - 1)
                  / PADDLE_OPERATORS_ROIPOOL_CUDA_NUM_THREADS,
                  PADDLE_OPERATORS_ROIPOOL_MAXIMUM_NUM_BLOCKS);
}

template <typename T>
__global__ void GPURoiPoolForward(
    const int nthreads,
    const T* input_data,
    const int64_t* input_rois,
    const float spatial_scale,
    const int channels,
    const int height,
    const int width,
    const int pooled_height,
    const int pooled_width,
    T* output_data,
    int64_t* argmax_data) {
      int index = blockIdx.x * blockDim.x + threadIdx.x;
      int offset = blockDim.x * gridDim.x;
      for (size_t i = index; i < nthreads; i += offset) {
        int pw = index % pooled_width;
        int ph = (index / pooled_width) % pooled_height;
        int c = (index / pooled_width / pooled_height) % channels;
        int n = index / pooled_width / pooled_height / channels;

        const int64_t* offset_input_rois = input_rois + n * 5;
        int roi_batch_ind = offset_input_rois[0];
        int roi_start_w = round(offset_input_rois[1] * spatial_scale);
        int roi_start_h = round(offset_input_rois[2] * spatial_scale);
        int roi_end_w = round(offset_input_rois[3] * spatial_scale);
        int roi_end_h = round(offset_input_rois[4] * spatial_scale);

        int roi_width = max(roi_end_w - roi_start_w + 1, 1);
        int roi_height = max(roi_end_h - roi_start_h + 1, 1);
        T bin_size_h = static_cast<T>(roi_height)
                      / static_cast<T>(pooled_height);
        T bin_size_w = static_cast<T>(roi_width)
                      / static_cast<T>(pooled_width);

        int hstart = static_cast<int>(floor(static_cast<T>(ph) * bin_size_h));
        int wstart = static_cast<int>(floor(static_cast<T>(pw) * bin_size_w));
        int hend = static_cast<int>(ceil(static_cast<T>(ph + 1) * bin_size_h));
        int wend = static_cast<int>(ceil(static_cast<T>(pw + 1) * bin_size_w));

        hstart = min(max(hstart + roi_start_h, 0), height);
        hend = min(max(hend + roi_start_h, 0), height);
        wstart = min(max(wstart + roi_start_w, 0), width);
        wend = min(max(wend + roi_start_w, 0), width);
        bool is_empty = (hend <= hstart) || (wend <= wstart);

        T maxval = is_empty ? 0 : -FLT_MAX;
        int maxidx = -1;
        const T* offset_input_data =
            input_data + (roi_batch_ind * channels + c) * height * width;
        for (int h = hstart; h < hend; ++h) {
          for (int w = wstart; w < wend; ++w) {
            int input_data_index = h * width + w;
            if (offset_input_data[input_data_index] > maxval) {
              maxval = offset_input_data[input_data_index];
              maxidx = input_data_index;
            }
          }
        }
        output_data[index] = maxval;
        if (argmax_data) {
          argmax_data[index] = maxidx;
        }
    }
  }

template <typename T>
__global__ void GPURoiPoolBackward(
    const int nthreads,
    const int64_t* input_rois,
    const T* output_grad,
    const int64_t* argmax_data,
    const int num_rois,
    const float spatial_scale,
    const int channels,
    const int height,
    const int width,
    const int pooled_height,
    const int pooled_width,
    T* input_grad) {
    int index = blockIdx.x * blockDim.x + threadIdx.x;
    int offset = blockDim.x * gridDim.x;
    for (int i = index; i < nthreads; i += offset) {
      int pw = index % pooled_width;
      int ph = (index / pooled_width) % pooled_height;
      int c = (index / pooled_width / pooled_height) % channels;
      int n = index / pooled_width / pooled_height / channels;

      const int64_t* offset_input_rois = input_rois + n * 5;
      int roi_batch_ind = offset_input_rois[0];
      int input_offset = (roi_batch_ind * channels + c) * height * width;
      int output_offset = (n * channels + c) * pooled_height * pooled_width;
      const T* offset_output_grad = output_grad + output_offset;
      T* offset_input_grad = input_grad + input_offset;
      const int64_t* offset_argmax_data = argmax_data + output_offset;

      int argmax = offset_argmax_data[ph * pooled_width + pw];
      if (argmax != -1) {
        platform::CudaAtomicAdd(offset_input_grad + argmax,
          static_cast<T>(offset_output_grad[ph * pooled_width + pw]));
      }
    }
  }


template <typename Place, typename T>
class GPURoiPoolOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* in = ctx.Input<Tensor>("X");
    auto* rois = ctx.Input<Tensor>("Rois");
    auto* out = ctx.Output<Tensor>("Out");
    auto* argmax = ctx.Output<Tensor>("Argmax");

    auto pooled_height = ctx.Attr<int>("pooled_height");
    auto pooled_width = ctx.Attr<int>("pooled_width");
    auto spatial_scale = ctx.Attr<float>("spatial_scale");

    PADDLE_ENFORCE_GT(pooled_height, 0,
                      "The pooled output height must greater than 0");
    PADDLE_ENFORCE_GT(pooled_width, 0,
                      "The pooled output width must greater than 0");
    PADDLE_ENFORCE_GT(spatial_scale, 0,
                      "The spatial scale must greater than 0");

    auto in_dims = in->dims();
    auto in_stride = framework::stride(in_dims);
    int channels = in_dims[1];
    int height = in_dims[2];
    int width = in_dims[3];

    int rois_num = rois->dims()[0];
    auto out_dims = in_dims;
    out_dims[0] = rois_num;
    out_dims[1] = in_dims[1];
    out_dims[2] = pooled_height;
    out_dims[3] = pooled_width;

    out->Resize(out_dims);
    out->mutable_data<T>(ctx.GetPlace());
    math::SetConstant<Place, T> set_zero;
    set_zero(ctx.device_context(), out, static_cast<T>(0));
    argmax->Resize(out->dims());
    argmax->mutable_data<int64_t>(ctx.GetPlace());
    math::SetConstant<Place, int64_t> set_init;
    set_init(ctx.device_context(), argmax, static_cast<int64_t>(-1));

    if (rois_num== 0) return;

    int output_size = out->numel();
    int blocks = PADDLE_OPERATORS_ROIPOOL_GET_BLOCKS(output_size);
    int threads = PADDLE_OPERATORS_ROIPOOL_CUDA_NUM_THREADS;

    GPURoiPoolForward<T>
      <<<blocks, threads, 0, ctx.cuda_device_context().stream()>>>(
      output_size,
      in->data<T>(),
      rois->data<int64_t>(),
      spatial_scale,
      channels,
      height,
      width,
      pooled_height,
      pooled_width,
      out->mutable_data<T>(ctx.GetPlace()),
      argmax->mutable_data<int64_t>(ctx.GetPlace()));

      return;
  }
};

template <typename Place, typename T>
class GPURoiPoolGradOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* in = ctx.Input<Tensor>("X");
    auto* rois = ctx.Input<Tensor>("Rois");
    auto* argmax = ctx.Input<Tensor>("Argmax");

    auto* out_grad =
        ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto* x_grad =
        ctx.Output<Tensor>(framework::GradVarName("X"));

    auto pooled_height = ctx.Attr<int>("pooled_height");
    auto pooled_width = ctx.Attr<int>("pooled_width");
    auto spatial_scale = ctx.Attr<float>("spatial_scale");

    int rois_num = rois->dims()[0];
    int channels = in->dims()[1];
    int height = in->dims()[2];
    int width = in->dims()[3];

    if (x_grad) {
      x_grad->Resize(in->dims());
      x_grad->mutable_data<T>(ctx.GetPlace());
      math::SetConstant<Place, T> set_zero;
      set_zero(ctx.device_context(), x_grad, static_cast<T>(0));

      int output_grad_size = out_grad->numel();
      int blocks = PADDLE_OPERATORS_ROIPOOL_GET_BLOCKS(output_grad_size);
      int threads = PADDLE_OPERATORS_ROIPOOL_CUDA_NUM_THREADS;

      if (output_grad_size > 0) {
        GPURoiPoolBackward<T>
          <<<blocks, threads, 0, ctx.cuda_device_context().stream()>>>(
          output_grad_size,
          rois->data<int64_t>(),
          out_grad->data<T>(),
          argmax->data<int64_t>(),
          rois_num,
          spatial_scale,
          channels,
          height,
          width,
          pooled_height,
          pooled_width,
          x_grad->mutable_data<T>(ctx.GetPlace()));
        }
      return;
    }
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_GPU_KERNEL(
    roi_pool,
    ops::GPURoiPoolOpKernel<paddle::platform::GPUPlace, float>);
REGISTER_OP_GPU_KERNEL(
    roi_pool_grad,
    ops::GPURoiPoolGradOpKernel<paddle::platform::GPUPlace, float>);