test_SparseMatrix.cpp 20.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

X
Xin Pan 已提交
15
#include <paddle/legacy/utils/PythonUtil.h>
Z
zhangjinchao01 已提交
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
#include <vector>
#include "test_matrixUtil.h"

using namespace paddle;  // NOLINT

TEST(Matrix, CopyCpuMatrixToSparseMatrix) {
  const size_t HEIGHT = 20;
  const size_t WIDTH = 10;
  const size_t WIDTH_TEST = 15;
  MatrixPtr testMatrix(
      new CpuSparseMatrix(HEIGHT, WIDTH, HEIGHT * 5, FLOAT_VALUE, SPARSE_CSR));
  MatrixPtr testCpuMatrix(new CpuMatrix(HEIGHT, WIDTH));
  testCpuMatrix->randomizeUniform();
  testMatrix->copyFrom(*testCpuMatrix, HPPL_STREAM_DEFAULT);
  MatrixPtr mulCpuMatrix(new CpuMatrix(WIDTH, WIDTH_TEST));
  mulCpuMatrix->randomizeUniform();
  MatrixPtr ret1(new CpuMatrix(HEIGHT, WIDTH_TEST)),
      ret2(new CpuMatrix(HEIGHT, WIDTH_TEST));
  ret1->zeroMem();
  ret2->zeroMem();
36 37
  ret1->mul(*testMatrix, *mulCpuMatrix, 1.0, 1.0);
  ret2->mul(*testCpuMatrix, *mulCpuMatrix, 1.0, 1.0);
Z
zhangjinchao01 已提交
38 39 40 41 42 43 44 45 46 47 48 49
  checkMatrixEqual(ret1, ret2);
}

struct MatrixPara {
  size_t height;
  size_t width;
  bool trans;
  bool sparse;
  size_t nnz;
  SparseFormat format;
};

50
#ifdef PADDLE_WITH_CUDA
51 52
void test_sparse_matrix_mul(MatrixPara paraA,
                            MatrixPara paraB,
Z
zhangjinchao01 已提交
53 54 55 56 57 58 59 60 61
                            MatrixPara paraC) {
  // for cpu sparse matrix mul
  MatrixPtr cpuMatrixA, cpuMatrixB, cpuMatrixC, gpuMatrixC_d2h;
  // for gpu sparse matrix mul
  MatrixPtr gpuMatrixA, gpuMatrixB, gpuMatrixC;
  // for cpu dense matrix mul
  MatrixPtr cpuDenseA, cpuDenseB, cpuDenseC;

  if (paraA.sparse) {
62 63 64 65 66 67 68 69 70 71 72 73 74 75
    cpuMatrixA = Matrix::createSparseMatrix(paraA.height,
                                            paraA.width,
                                            paraA.nnz,
                                            FLOAT_VALUE,
                                            paraA.format,
                                            paraA.trans,
                                            false);
    gpuMatrixA = Matrix::createSparseMatrix(paraA.height,
                                            paraA.width,
                                            paraA.nnz,
                                            FLOAT_VALUE,
                                            paraA.format,
                                            paraA.trans,
                                            true);
Z
zhangjinchao01 已提交
76 77 78 79 80 81 82
  } else {
    cpuMatrixA = Matrix::create(paraA.height, paraA.width, paraA.trans, false);
    gpuMatrixA = Matrix::create(paraA.height, paraA.width, paraA.trans, true);
  }
  cpuDenseA = Matrix::create(paraA.height, paraA.width, paraA.trans, false);

  if (paraB.sparse) {
83 84 85 86 87 88 89 90 91 92 93 94 95 96
    cpuMatrixB = Matrix::createSparseMatrix(paraB.height,
                                            paraB.width,
                                            paraB.nnz,
                                            FLOAT_VALUE,
                                            paraB.format,
                                            paraB.trans,
                                            false);
    gpuMatrixB = Matrix::createSparseMatrix(paraB.height,
                                            paraB.width,
                                            paraB.nnz,
                                            FLOAT_VALUE,
                                            paraB.format,
                                            paraB.trans,
                                            true);
Z
zhangjinchao01 已提交
97 98 99 100 101 102 103
  } else {
    cpuMatrixB = Matrix::create(paraB.height, paraB.width, paraB.trans, false);
    gpuMatrixB = Matrix::create(paraB.height, paraB.width, paraB.trans, true);
  }
  cpuDenseB = Matrix::create(paraB.height, paraB.width, paraB.trans, false);

  if (paraC.sparse) {
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
    cpuMatrixC = Matrix::createSparseMatrix(paraC.height,
                                            paraC.width,
                                            paraC.nnz,
                                            FLOAT_VALUE,
                                            paraC.format,
                                            paraC.trans,
                                            false);
    gpuMatrixC = Matrix::createSparseMatrix(paraC.height,
                                            paraC.width,
                                            paraC.nnz,
                                            FLOAT_VALUE,
                                            paraC.format,
                                            paraC.trans,
                                            true);
    gpuMatrixC_d2h = Matrix::createSparseMatrix(paraC.height,
                                                paraC.width,
                                                paraC.nnz,
                                                FLOAT_VALUE,
                                                paraC.format,
                                                paraC.trans,
                                                false);
Z
zhangjinchao01 已提交
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
  } else {
    cpuMatrixC = Matrix::create(paraC.height, paraC.width, paraC.trans, false);
    gpuMatrixC = Matrix::create(paraC.height, paraC.width, paraC.trans, true);
    gpuMatrixC_d2h =
        Matrix::create(paraC.height, paraC.width, paraC.trans, false);
  }
  cpuDenseC = Matrix::create(paraC.height, paraC.width, paraC.trans, false);

  /*matrix init*/
  hl_stream_t stream(HPPL_STREAM_1);
  cpuMatrixA->randomizeUniform();
  cpuMatrixB->randomizeUniform();
  cpuMatrixC->randomizeUniform();

  gpuMatrixA->copyFrom(*cpuMatrixA, stream);
  gpuMatrixB->copyFrom(*cpuMatrixB, stream);
  gpuMatrixC->copyFrom(*cpuMatrixC, stream);

  cpuDenseA->copyFrom(*cpuMatrixA);
  cpuDenseB->copyFrom(*cpuMatrixB);
  cpuDenseC->copyFrom(*cpuMatrixC);

  hl_stream_synchronize(stream);

  /*matrix mul*/
150 151 152
  cpuMatrixC->mul(*cpuMatrixA, *cpuMatrixB, 1.0, 1.0);
  gpuMatrixC->mul(*gpuMatrixA, *gpuMatrixB, 1.0, 1.0);
  cpuDenseC->mul(*cpuDenseA, *cpuDenseB, 1.0, 1.0);
Z
zhangjinchao01 已提交
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226

  gpuMatrixC_d2h->copyFrom(*gpuMatrixC, stream);
  hl_stream_synchronize(stream);

  /*check result*/
  if (paraC.sparse) {
    checkSMatrixEqual(
        std::dynamic_pointer_cast<CpuSparseMatrix>(cpuMatrixC),
        std::dynamic_pointer_cast<CpuSparseMatrix>(gpuMatrixC_d2h));
    checkSMatrixEqual2Dense(
        std::dynamic_pointer_cast<CpuSparseMatrix>(cpuMatrixC),
        std::dynamic_pointer_cast<CpuMatrix>(cpuDenseC));
  } else {
    checkMatrixEqual(cpuMatrixC, gpuMatrixC_d2h);
    checkMatrixEqual(cpuMatrixC, cpuDenseC);
  }
}

TEST(Matrix, SparseMatrixMul) {
  const size_t DIM_M = 4;
  const size_t DIM_N = 4;
  const size_t DIM_K = 8;
  const size_t NNZ = 5;
  for (auto format : {SPARSE_CSC, SPARSE_CSR}) {
    std::string str_format = format == SPARSE_CSC ? "CSC" : "CSR";
    LOG(INFO) << "test dense mul " << str_format;
    test_sparse_matrix_mul(
        {DIM_M, DIM_K, /*trans*/ false, /*sparse*/ false, NNZ, format},
        {DIM_K, DIM_N, /*trans*/ false, /*sparse*/ true, NNZ, format},
        {DIM_M, DIM_N, /*trans*/ false, /*sparse*/ false, NNZ, format});

    LOG(INFO) << "test dense mul " << str_format << "  trans";
    test_sparse_matrix_mul(
        {DIM_M, DIM_K, /*trans*/ false, /*sparse*/ false, NNZ, format},
        {DIM_N, DIM_K, /*trans*/ true, /*sparse*/ true, NNZ, format},
        {DIM_M, DIM_N, /*trans*/ false, /*sparse*/ false, NNZ, format});

    LOG(INFO) << "test dense mul dense 2 " << str_format;
    test_sparse_matrix_mul(
        {DIM_M, DIM_K, /*trans*/ false, /*sparse*/ false, NNZ, format},
        {DIM_K, DIM_N, /*trans*/ false, /*sparse*/ false, NNZ, format},
        {DIM_M, DIM_N, /*trans*/ false, /*sparse*/ true, NNZ, format});

    LOG(INFO) << "test denseT mul dense 2 " << str_format;
    test_sparse_matrix_mul(
        {DIM_K, DIM_M, /*trans*/ true, /*sparse*/ false, NNZ, format},
        {DIM_K, DIM_N, /*trans*/ false, /*sparse*/ false, NNZ, format},
        {DIM_M, DIM_N, /*trans*/ false, /*sparse*/ true, NNZ, format});
  }
}

TEST(Matrix, CopySparseMatrixToGpuSparseMatrix) {
  const size_t HEIGHT = 20;
  const size_t WIDTH = 10;
  const size_t WIDTH_TEST = 15;
  MatrixPtr testMatrix(
      new CpuSparseMatrix(HEIGHT, WIDTH, HEIGHT * 2, FLOAT_VALUE, SPARSE_CSR));
  MatrixPtr testCpuMatrix(new CpuMatrix(HEIGHT, WIDTH));
  testCpuMatrix->randomizeUniform();
  testMatrix->copyFrom(*testCpuMatrix, HPPL_STREAM_DEFAULT);

  MatrixPtr testGpuMatrix = testMatrix->clone(HEIGHT, WIDTH, true);
  hl_stream_t gpuStream(HPPL_STREAM_3);
  testGpuMatrix->copyFrom(*testMatrix, gpuStream);
  hl_stream_synchronize(gpuStream);

  MatrixPtr mulCpuMatrix(new CpuMatrix(WIDTH, WIDTH_TEST));
  mulCpuMatrix->randomizeUniform();
  MatrixPtr mulGpuMatrix(new GpuMatrix(WIDTH, WIDTH_TEST));
  mulGpuMatrix->copyFrom(*mulCpuMatrix);
  MatrixPtr ret1(new CpuMatrix(HEIGHT, WIDTH_TEST));
  MatrixPtr ret2(new GpuMatrix(HEIGHT, WIDTH_TEST));
  ret1->zeroMem();
  ret2->zeroMem();
227 228
  ret1->mul(*testMatrix, *mulCpuMatrix, 1.0, 1.0);
  ret2->mul(*testGpuMatrix, *mulGpuMatrix, 1.0, 1.0);
Z
zhangjinchao01 已提交
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
  checkMatrixEqual(ret1, ret2);
}

#endif

TEST(Matrix, SparseMatrixTranspose) {
  for (auto height : {10, 50, 100}) {
    for (auto width : {10, 50, 100}) {
      auto nnz = height * width;
      for (auto valueType : {FLOAT_VALUE, NO_VALUE}) {
        for (auto format : {SPARSE_CSR, SPARSE_CSC}) {
          for (auto sparseRate : {0.1, 0.2, 0.5}) {
            MatrixPtr matA = Matrix::createSparseMatrix(
                height, width, size_t(nnz * sparseRate), valueType, format);
            MatrixPtr matB(new CpuSparseMatrix(
                width, height, size_t(nnz * sparseRate), valueType, format));
            matA->randomizeUniform();
            matA->transpose(matB, false);

            /*dense matrix transpose*/
            CpuMatrixPtr matC(new CpuMatrix(height, width));
            matC->copyFrom(*matA);
251
            MatrixPtr matD(new CpuMatrix(width, height));
Z
zhangjinchao01 已提交
252
            matC->transpose(matD, false);
253

Z
zhangjinchao01 已提交
254 255
            /*check result*/
            checkSMatrixEqual2Dense(
256 257
                std::dynamic_pointer_cast<CpuSparseMatrix>(matB),
                std::dynamic_pointer_cast<CpuMatrix>(matD));
Z
zhangjinchao01 已提交
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
          }
        }
      }
    }
  }
}

TEST(Matrix, CpuSparseMatrixSubMatrix) {
  const size_t HEIGHT = 10;
  const size_t WIDTH = 10;
  const size_t NNZ = HEIGHT * WIDTH;
  for (auto valueType : {FLOAT_VALUE, NO_VALUE}) {
    size_t startRow = 3;
    size_t rowNum = 2;
    real sparseRate = 0.1;
    /*sparse matrix init and get subMatrix*/
    CpuSparseMatrixPtr matA = std::make_shared<CpuSparseMatrix>(
        HEIGHT, WIDTH, size_t(NNZ * sparseRate), valueType, SPARSE_CSR);
    matA->randomizeUniform();
    CpuSparseMatrixPtr matB = std::dynamic_pointer_cast<CpuSparseMatrix>(
        matA->subMatrix(startRow, rowNum));

    int start = matA->getRows()[startRow];
    int end = matA->getRows()[startRow + rowNum];

    /*compare two matrix*/
    ASSERT_EQ(matB->getElementCnt(), size_t(end - start));
    if (valueType == FLOAT_VALUE) {
      for (size_t i = 0; i < matB->getElementCnt(); i++) {
        ASSERT_FLOAT_EQ(matB->getValue()[start + i],
                        matA->getValue()[start + i]);
      }
    }

    for (size_t i = 0; i < matB->getElementCnt(); i++) {
      ASSERT_EQ(matB->getCols()[start + i], matA->getCols()[start + i]);
    }
    for (size_t i = 0; i < rowNum; i++) {
      ASSERT_EQ(matB->getRows()[i], matA->getRows()[startRow + i]);
    }
  }
}

301 302
void sparseValid(
    int* major, int* minor, size_t nnz, size_t majorLen, size_t minorLen) {
Z
zhangjinchao01 已提交
303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
  CHECK_EQ(nnz, size_t(major[majorLen - 1]));
  CHECK_EQ(nnz, minorLen);
  for (size_t i = 0; i < majorLen - 1; i++) {
    EXPECT_LE(major[i], major[i + 1]);
    for (int j = major[i]; j < major[i + 1] - 1; j++) {
      EXPECT_LE(minor[j], minor[j + 1]);
    }
  }
}

TEST(Matrix, CpuSparseMatrixRandUniform) {
  const size_t HEIGHT = 5;
  const size_t WIDTH = 10;
  const size_t NNZ = HEIGHT * WIDTH;
  int* major = nullptr;
  int* minor = nullptr;
  size_t majorLen = 0;
  size_t minorLen = 0;
  size_t nnz = 0;
  for (auto valueType : {NO_VALUE, FLOAT_VALUE}) {
    for (auto format : {SPARSE_CSR, SPARSE_CSC}) {
      CpuSparseMatrixPtr matA = std::make_shared<CpuSparseMatrix>(
          HEIGHT, WIDTH, size_t(NNZ * 0.1), valueType, format);
      matA->randomizeUniform();
      nnz = matA->getElementCnt();
      if (format == SPARSE_CSR) {
        majorLen = matA->getHeight() + 1;
        minorLen = matA->getElementCnt();
        major = matA->getRows();
        minor = matA->getCols();
      } else {
        majorLen = matA->getWidth() + 1;
        minorLen = matA->getElementCnt();
        major = matA->getCols();
        minor = matA->getRows();
      }
      sparseValid(major, minor, nnz, majorLen, minorLen);
    }
  }
}

TEST(Matrix, CpuSparseMatrixCopyFrom) {
  size_t height = 10;
  size_t width = 8;
  int64_t indices[11] = {0, 1, 5, 5, 9, 13, 15, 17, 19, 30, 32};
  sparse_non_value_t data[32];
  for (size_t i = 0; i < 32; i++) {
    data[i].col = ::rand() % width;
  }
  CpuSparseMatrixPtr mat = std::make_shared<CpuSparseMatrix>(
      height, width, 32, NO_VALUE, SPARSE_CSR, false);
  mat->copyFrom(indices, data);

  /*compare indices*/
  size_t sum = 0;
  CHECK_EQ(sum, size_t(mat->getRows()[0]));
  for (size_t i = 1; i < height + 1; i++) {
    sum += indices[i] - indices[i - 1];
    CHECK_EQ(sum, size_t(mat->getRows()[i]));
  }
  CHECK_EQ(mat->getElementCnt(), size_t(indices[height] - indices[0]));
  for (size_t i = 0; i < mat->getElementCnt(); i++) {
    CHECK_EQ(size_t(mat->getCols()[i]), size_t(data[i].col));
  }
}

TEST(Matrix, SparseMatrixCSRFormatTrimFrom) {
  size_t height = 10;
  size_t width = 8;
  int64_t indices[11] = {0, 1, 5, 5, 9, 13, 15, 17, 19, 27, 32};
  sparse_float_value_t data[32];
  int value[32] = {
      1,                       // row_0 : 1
      5, 3, 1, 6,              // row_1 : 4
      0, 1, 2, 3,              // row_3 : 4
      4, 5, 6, 7,              // row_4 : 4
      2, 3,                    // row_5 : 2
      3, 5,                    // row_6 : 2
      0, 1,                    // row_7 : 2
      0, 1, 2, 3, 4, 5, 6, 7,  // row_8 : 8
      2, 4, 7, 3, 1            // row_9 : 5
  };
  for (size_t i = 0; i < 32; i++) {
    data[i].col = value[i];
    data[i].value = float(value[i]);
  }
  CpuSparseMatrixPtr mat = std::make_shared<CpuSparseMatrix>(
      height, width, 32, FLOAT_VALUE, SPARSE_CSR, false);
  mat->copyFrom(indices, data);

  /*compare indices*/
  size_t sum = 0;
  CHECK_EQ(sum, size_t(mat->getRows()[0]));
  for (size_t i = 1; i < height + 1; i++) {
    sum += indices[i] - indices[i - 1];
    CHECK_EQ(sum, size_t(mat->getRows()[i]));
  }
  CHECK_EQ(mat->getElementCnt(), size_t(indices[height] - indices[0]));
  for (size_t i = 0; i < mat->getElementCnt(); i++) {
    CHECK_EQ(size_t(mat->getCols()[i]), size_t(data[i].col));
  }

  size_t trimedWidth = 4;
  int64_t trimedIndices[11] = {0, 1, 3, 3, 7, 7, 9, 10, 12, 16, 19};
  sparse_float_value_t trimedData[19];
  int trimedValue[19] = {
409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
      1,  // row_0 : 1
      3,
      1,  // row_1 : 2
      0,
      1,
      2,
      3,  // row_3 : 4
      2,
      3,  // row_5 : 2
      3,  // row_6 : 1
      0,
      1,  // row_7 : 2
      0,
      1,
      2,
      3,  // row_8 : 4
      2,
      3,
      1  // row_9 : 3
Z
zhangjinchao01 已提交
428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
  };
  for (size_t i = 0; i < 19; i++) {
    trimedData[i].col = trimedValue[i];
    trimedData[i].value = float(trimedValue[i]);
  }
  CpuSparseMatrixPtr matA = std::make_shared<CpuSparseMatrix>(
      height, trimedWidth, 19, FLOAT_VALUE, SPARSE_CSR, false);
  matA->copyFrom(trimedIndices, trimedData);

  /*compare indices*/
  sum = 0;
  CHECK_EQ(sum, size_t(matA->getRows()[0]));
  for (size_t i = 1; i < height + 1; i++) {
    sum += trimedIndices[i] - trimedIndices[i - 1];
    CHECK_EQ(sum, size_t(matA->getRows()[i]));
  }
  CHECK_EQ(matA->getElementCnt(),
           size_t(trimedIndices[height] - trimedIndices[0]));
  for (size_t i = 0; i < matA->getElementCnt(); i++) {
    CHECK_EQ(size_t(matA->getCols()[i]), size_t(trimedData[i].col));
  }

  CpuSparseMatrixPtr matB = std::make_shared<CpuSparseMatrix>(
      height, trimedWidth, height, FLOAT_VALUE, SPARSE_CSR, false);
  matB->trimFrom(*mat);
  checkSMatrixEqual2(matA, matB);

455
#ifdef PADDLE_WITH_CUDA
Z
zhangjinchao01 已提交
456 457 458 459
  GpuSparseMatrixPtr matC = std::make_shared<GpuSparseMatrix>(
      height, trimedWidth, height, FLOAT_VALUE, SPARSE_CSR, true);
  matC->trimFrom(*mat);

460 461 462 463 464 465 466
  CpuSparseMatrixPtr matD =
      std::make_shared<CpuSparseMatrix>(height,
                                        trimedWidth,
                                        matC->getElementCnt(),
                                        FLOAT_VALUE,
                                        SPARSE_CSR,
                                        false);
Z
zhangjinchao01 已提交
467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
  matD->copyFrom(*matC, HPPL_STREAM_DEFAULT);
  hl_stream_synchronize(HPPL_STREAM_DEFAULT);
  checkSMatrixEqual2(matA, matD);
#endif
}

TEST(Matrix, SparseMatrixCSCFormatTrimFrom) {
  size_t height = 8;
  size_t width = 10;
  int indices[11] = {0, 1, 5, 5, 9, 13, 15, 17, 19, 27, 32};
  int value[32] = {
      1,                       // col_0 : 1
      5, 3, 1, 6,              // col_1 : 4
      0, 1, 2, 3,              // col_3 : 4
      4, 5, 6, 7,              // col_4 : 4
      2, 3,                    // col_5 : 2
      3, 5,                    // col_6 : 2
      0, 1,                    // col_7 : 2
      0, 1, 2, 3, 4, 5, 6, 7,  // col_8 : 8
      2, 4, 7, 3, 1            // col_9 : 5
  };
  std::vector<int> rows(value, value + 32);
  std::vector<int> cols(indices, indices + 11);
  std::vector<real> values(value, value + 32);
  CpuSparseMatrixPtr mat = std::make_shared<CpuSparseMatrix>(
      height, width, 32, FLOAT_VALUE, SPARSE_CSC, false);
  mat->copyFrom(rows, cols, values);

  /*compare indices*/
  size_t sum = 0;
  CHECK_EQ(sum, size_t(mat->getCols()[0]));
  for (size_t i = 1; i < width + 1; i++) {
    sum += indices[i] - indices[i - 1];
    CHECK_EQ(sum, size_t(mat->getCols()[i]));
  }
  CHECK_EQ(mat->getElementCnt(), size_t(indices[width] - indices[0]));
  for (size_t i = 0; i < mat->getElementCnt(); i++) {
    CHECK_EQ(size_t(mat->getRows()[i]), size_t(value[i]));
  }

  size_t trimedWidth = 5;
  int trimedIndices[6] = {0, 1, 5, 5, 9, 13};
  int trimedValue[13] = {
      1,  // col_0 : 1
511 512 513
      5,
      3,
      1,
Z
zhangjinchao01 已提交
514
      6,  // col_1 : 4
515 516 517
      0,
      1,
      2,
Z
zhangjinchao01 已提交
518
      3,  // col_3 : 4
519 520 521
      4,
      5,
      6,
Z
zhangjinchao01 已提交
522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
      7  // col_4 : 4
  };
  std::vector<int> rowsA(trimedValue, trimedValue + 13);
  std::vector<int> colsA(trimedIndices, trimedIndices + 6);
  std::vector<real> valuesA(trimedValue, trimedValue + 13);
  CpuSparseMatrixPtr matA = std::make_shared<CpuSparseMatrix>(
      height, trimedWidth, 13, FLOAT_VALUE, SPARSE_CSC, false);
  matA->copyFrom(rowsA, colsA, valuesA);

  /*compare indices*/
  sum = 0;
  CHECK_EQ(sum, size_t(matA->getCols()[0]));
  for (size_t i = 1; i < trimedWidth + 1; i++) {
    sum += trimedIndices[i] - trimedIndices[i - 1];
    CHECK_EQ(sum, size_t(matA->getCols()[i]));
  }
  CHECK_EQ(matA->getElementCnt(),
           size_t(trimedIndices[trimedWidth] - trimedIndices[0]));
  for (size_t i = 0; i < matA->getElementCnt(); i++) {
    CHECK_EQ(size_t(matA->getRows()[i]), size_t(rowsA[i]));
  }

  CpuSparseMatrixPtr matB = std::make_shared<CpuSparseMatrix>(
      height, trimedWidth, height, FLOAT_VALUE, SPARSE_CSC, false);
  matB->trimFrom(*mat);
  checkSMatrixEqual2(matA, matB);

549
#ifdef PADDLE_WITH_CUDA
Z
zhangjinchao01 已提交
550 551 552 553
  GpuSparseMatrixPtr matC = std::make_shared<GpuSparseMatrix>(
      height, trimedWidth, height, FLOAT_VALUE, SPARSE_CSC, true);
  matC->trimFrom(*mat);

554 555 556 557 558 559 560
  CpuSparseMatrixPtr matD =
      std::make_shared<CpuSparseMatrix>(height,
                                        trimedWidth,
                                        matC->getElementCnt(),
                                        FLOAT_VALUE,
                                        SPARSE_CSC,
                                        false);
Z
zhangjinchao01 已提交
561 562 563 564 565
  matD->copyFrom(*matC, HPPL_STREAM_DEFAULT);
  hl_stream_synchronize(HPPL_STREAM_DEFAULT);
  checkSMatrixEqual2(matA, matD);
#endif
}