pool_mkldnn_op.cc 18.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

X
xiaoli.liu@intel.com 已提交
15
#include "paddle/fluid/framework/data_layout_transform.h"
16 17
#include "paddle/fluid/operators/pool_op.h"
#include "paddle/fluid/platform/mkldnn_helper.h"
18
#include "paddle/fluid/platform/mkldnn_reuse.h"
19 20 21 22

namespace paddle {
namespace operators {

23 24
using framework::DataLayout;
using mkldnn::memory;
25
using mkldnn::pooling_backward;
26 27 28 29 30
using mkldnn::pooling_forward;
using mkldnn::primitive;
using mkldnn::reorder;
using mkldnn::stream;
using platform::to_void_cast;
31 32

// Generate keys for storing/retriving primitives for this operator
33 34 35 36 37 38
std::string CreateKey(const paddle::framework::ExecutionContext& ctx,
                      const memory::dims& input_dims,
                      const std::string& pooling_type,
                      const std::vector<int>& ksize,
                      const std::vector<int>& strides,
                      const std::vector<int>& paddings,
39 40
                      const memory::data_type& dt, const memory::format& fmt,
                      const std::string& suffix) {
41 42 43 44 45 46 47 48
  std::string key;
  key.reserve(platform::MKLDNNHandler::MaxKeyLength);
  platform::MKLDNNHandler::AppendKeyDims(&key, input_dims);
  platform::MKLDNNHandler::AppendKey(&key, pooling_type);
  platform::MKLDNNHandler::AppendKeyVec(&key, ksize);
  platform::MKLDNNHandler::AppendKeyVec(&key, strides);
  platform::MKLDNNHandler::AppendKeyVec(&key, paddings);
  platform::MKLDNNHandler::AppendKey(&key, std::to_string(dt));
49
  platform::MKLDNNHandler::AppendKey(&key, std::to_string(fmt));
50 51
  platform::MKLDNNHandler::AppendKey(&key, suffix);
  return key;
52 53
}

54 55
static inline int ComputeCeiledOutput(int input_size, int kernel_size,
                                      int padding, int stride) {
56 57 58
  return (input_size - kernel_size + 2 * padding) / stride + 1;
}

59 60 61 62 63 64
static inline void CorrectOutputSize(
    const std::vector<int>& src_tz, const std::vector<int>& dst_tz,
    const std::vector<int>& kernel_size, const std::vector<int>& paddings,
    const std::vector<int>& strides,
    std::vector<int>& right_bot_padding) {  // NOLINT
  for (size_t i = 0; i < right_bot_padding.size(); i++) {
65 66 67 68 69 70 71 72
    int desired_size = ComputeCeiledOutput(src_tz[i + 2], kernel_size[i],
                                           paddings[i], strides[i]);
    if (desired_size != dst_tz[i + 2]) {
      right_bot_padding[i] += strides[i];
    }
  }
}

73 74 75 76 77 78 79 80 81 82 83 84 85
template <typename T>
class PoolMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                   "It must use CPUPlace.");
    auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    const Tensor* input = ctx.Input<Tensor>("X");
    Tensor* output = ctx.Output<Tensor>("Out");

86 87 88
    PADDLE_ENFORCE(input->layout() == DataLayout::kMKLDNN &&
                       input->format() != memory::format::format_undef,
                   "Wrong layout/format set for Input tensor");
89 90 91 92 93

    std::string pooling_type = ctx.Attr<std::string>("pooling_type");
    std::vector<int> ksize = ctx.Attr<std::vector<int>>("ksize");
    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
94
    bool is_test = ctx.Attr<bool>("is_test");
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
    if (ctx.Attr<bool>("global_pooling")) {
      for (size_t i = 0; i < ksize.size(); ++i) {
        paddings[i] = 0;
        ksize[i] = static_cast<int>(input->dims()[i + 2]);
      }
    }

    // Only 2D pooling is supported now
    PADDLE_ENFORCE(ksize.size() == 2, "ksize must be 2D, i.e. 2D pooling");
    PADDLE_ENFORCE(pooling_type == "max" || pooling_type == "avg",
                   "pooling_type must be 'max' or 'avg'");
    PADDLE_ENFORCE(input->dims().size() == 4,
                   "Input dim must be with 4, i.e. NCHW");

    const T* input_data = input->data<T>();
    T* output_data = output->mutable_data<T>(ctx.GetPlace());

    std::vector<int> src_tz = paddle::framework::vectorize2int(input->dims());
    std::vector<int> dst_tz = paddle::framework::vectorize2int(output->dims());

115 116 117
    auto input_format = input->format();
    memory::format output_format{memory::format::format_undef};

118 119
    mkldnn::memory::data_type dt =
        paddle::framework::ToMKLDNNDataType(input->type());
120 121 122 123
    auto fmt = input->format();
    const std::string key =
        CreateKey(ctx, src_tz, pooling_type, ksize, strides, paddings, dt, fmt,
                  ctx.op().Output("Out"));
124 125 126 127 128 129
    const std::string key_pool_p = key + "@pool_p";
    const std::string key_pool_pd = key + "@pool_pd";
    const std::string key_pool_src_mem_p = key + "@pool_src_mem_p";
    const std::string key_pool_dst_mem_p = key + "@pool_dst_mem_p";
    const std::string key_pool_workspace_memory =
        key + "@pool_workspace_memory";
130

131 132 133
    auto pool_p =
        std::static_pointer_cast<pooling_forward>(dev_ctx.GetBlob(key_pool_p));
    if (pool_p == nullptr) {
134 135 136 137 138 139 140
      const std::vector<int>& padding_left_top(paddings);
      std::vector<int> padding_right_bottom(paddings);
      bool ceil_mode = ctx.Attr<bool>("ceil_mode");
      if (ceil_mode) {
        CorrectOutputSize(src_tz, dst_tz, ksize, paddings, strides,
                          padding_right_bottom);
      }
X
xiaoli.liu@intel.com 已提交
141 142

      auto src_md = platform::MKLDNNMemDesc(src_tz, dt, input_format);
143

144 145 146 147
      /* create memory descriptor for pooling without specified format
       * ('any') which lets a primitive (pooling in this case) choose
       * the memory format preferred for best performance
       */
X
xiaoli.liu@intel.com 已提交
148 149 150 151 152
      auto dst_md =
          platform::MKLDNNMemDesc(dst_tz, dt, mkldnn::memory::format::any);
      auto propagation = src_md.data.data_type == mkldnn_f32
                             ? mkldnn::prop_kind::forward_training
                             : mkldnn::prop_kind::forward_scoring;
153
      std::shared_ptr<mkldnn::pooling_forward::primitive_desc> pool_pd =
X
xiaoli.liu@intel.com 已提交
154 155 156
          CreatePrimitiveDesc(src_md, dst_md, propagation, strides,
                              padding_left_top, padding_right_bottom, ksize,
                              pooling_type, mkldnn_engine, ceil_mode, is_test);
157 158

      // save pool_pd into global device context to be referred in backward path
159
      if (!is_test) dev_ctx.SetBlob(key_pool_pd, pool_pd);
160

161 162 163 164
      auto src_memory = std::make_shared<memory>(pool_pd->src_primitive_desc(),
                                                 to_void_cast<T>(input_data));
      auto dst_memory =
          std::make_shared<memory>(pool_pd->dst_primitive_desc(), output_data);
165

166 167 168
      dev_ctx.SetBlob(key_pool_src_mem_p, src_memory);
      dev_ctx.SetBlob(key_pool_dst_mem_p, dst_memory);

169 170 171 172 173 174 175 176 177 178 179 180 181
      if (is_test) {
        pool_p = std::make_shared<pooling_forward>(*pool_pd, *src_memory,
                                                   *dst_memory);
      } else {
        std::shared_ptr<mkldnn::memory> workspace_memory =
            CreateWorkspaceMemory(pool_pd, pooling_type, mkldnn_engine);

        // save pool_workspace_memory to be referred in backward path
        dev_ctx.SetBlob(key_pool_workspace_memory, workspace_memory);

        pool_p = std::make_shared<pooling_forward>(
            *pool_pd, *src_memory, *dst_memory, *workspace_memory);
      }
182 183

      dev_ctx.SetBlob(key_pool_p, pool_p);
184 185 186

      output_format =
          (memory::format)dst_memory->get_primitive_desc().desc().data.format;
187 188 189 190 191 192 193 194 195 196
    } else {
      // Primitives already exist
      auto pool_src_memory_p =
          std::static_pointer_cast<memory>(dev_ctx.GetBlob(key_pool_src_mem_p));
      PADDLE_ENFORCE(pool_src_memory_p != nullptr,
                     "Fail to find pooling src mem_p in device context");
      auto pool_dst_memory_p =
          std::static_pointer_cast<memory>(dev_ctx.GetBlob(key_pool_dst_mem_p));
      PADDLE_ENFORCE(pool_dst_memory_p != nullptr,
                     "Fail to find pooling dst mem_p in device context");
197
      pool_src_memory_p->set_data_handle(to_void_cast<T>(input_data));
198
      pool_dst_memory_p->set_data_handle(output_data);
199 200 201 202

      output_format = (memory::format)pool_dst_memory_p->get_primitive_desc()
                          .desc()
                          .data.format;
203
    }
204 205

    // push primitive to stream and wait until it's executed
206
    std::vector<mkldnn::primitive> pipeline{*pool_p};
207 208 209 210
    stream(stream::kind::eager).submit(pipeline).wait();

    output->set_layout(DataLayout::kMKLDNN);
    output->set_format(output_format);
211 212 213 214 215
  }

 private:
  std::unique_ptr<mkldnn::pooling_forward::primitive_desc> CreatePrimitiveDesc(
      const mkldnn::memory::desc& src, const mkldnn::memory::desc& dst,
X
xiaoli.liu@intel.com 已提交
216 217
      const mkldnn::prop_kind& propagation, const std::vector<int>& stride,
      const std::vector<int>& padding_left_top,
218 219
      const std::vector<int>& padding_right_bot, const std::vector<int>& kernel,
      const std::string& pooling_type, const mkldnn::engine& engine,
220 221 222 223
      bool ceil_mode, bool is_test) const {
    auto mkldnn_forward_prop_kind = is_test
                                        ? mkldnn::prop_kind::forward_inference
                                        : mkldnn::prop_kind::forward_training;
224
    auto pool_desc = mkldnn::pooling_forward::desc(
225
        mkldnn_forward_prop_kind,
226 227
        pooling_type == "max" ? mkldnn::algorithm::pooling_max
                              : mkldnn::algorithm::pooling_avg,
228 229
        src, dst, stride, kernel, padding_left_top, padding_right_bot,
        mkldnn::padding_kind::zero);
230 231 232 233 234 235 236 237 238 239 240 241

    auto p_pool_pd =
        new mkldnn::pooling_forward::primitive_desc(pool_desc, engine);
    return std::unique_ptr<mkldnn::pooling_forward::primitive_desc>(p_pool_pd);
  }

  std::unique_ptr<mkldnn::memory> CreateWorkspaceMemory(
      std::shared_ptr<mkldnn::pooling_forward::primitive_desc> pool_pd,
      const std::string& pooling_type, const mkldnn::engine& engine) const {
    mkldnn::memory::primitive_desc workspace_md =
        pooling_type == "max"
            ? pool_pd->workspace_primitive_desc()
242 243 244 245
            : mkldnn::memory::primitive_desc({{},
                                              platform::MKLDNNGetDataType<T>(),
                                              mkldnn::memory::format::nchw},
                                             engine);
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262

    auto p_workspace_memory = new mkldnn::memory(workspace_md);
    return std::unique_ptr<mkldnn::memory>(p_workspace_memory);
  }
};

template <typename T>
class PoolMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                   "It must use CPUPlace.");

    const Tensor* in_x = ctx.Input<Tensor>("X");
    const Tensor* out_grad = ctx.Input<Tensor>(framework::GradVarName("Out"));
    Tensor* in_x_grad = ctx.Output<Tensor>(framework::GradVarName("X"));

263 264 265 266 267 268 269
    PADDLE_ENFORCE(in_x->layout() == DataLayout::kMKLDNN &&
                       in_x->format() != memory::format::format_undef,
                   "Wrong layout/format set for Input X tensor");
    PADDLE_ENFORCE(out_grad->layout() == DataLayout::kMKLDNN &&
                       out_grad->format() != memory::format::format_undef,
                   "Wrong layout/format set for Input output_grad tensor");

270 271 272 273
    PADDLE_ENFORCE(
        !ctx.Attr<bool>("is_test"),
        "is_test attribute should be set to False in training phase.");

274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
    std::string pooling_type = ctx.Attr<std::string>("pooling_type");
    std::vector<int> ksize = ctx.Attr<std::vector<int>>("ksize");
    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");

    if (ctx.Attr<bool>("global_pooling")) {
      for (size_t i = 0; i < ksize.size(); ++i) {
        paddings[i] = 0;
        ksize[i] = static_cast<int>(in_x->dims()[i + 2]);
      }
    }

    auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();
    const mkldnn::engine& mkldnn_engine = dev_ctx.GetEngine();

    const T* out_grad_data = out_grad->data<T>();
    T* in_x_grad_data = in_x_grad->mutable_data<T>(ctx.GetPlace());
292
    memory::format in_x_grad_format{memory::format::format_undef};
293 294 295 296 297 298

    std::vector<int> diff_src_tz =
        paddle::framework::vectorize2int(in_x_grad->dims());
    std::vector<int> diff_dst_tz =
        paddle::framework::vectorize2int(out_grad->dims());

299 300
    // Get an unique name from "argument" name of "Out" variable
    // This name will be used as key when referring info from device context
301 302 303
    const std::string key = CreateKey(ctx, diff_src_tz, pooling_type, ksize,
                                      strides, paddings, memory::data_type::f32,
                                      in_x->format(), ctx.op().Input("Out"));
304 305 306
    const std::string key_pool_bwd_p = key + "@pool_bwd_p";
    const std::string key_pool_diff_src_mem_p = key + "@pool_diff_src_mem_p";
    const std::string key_pool_diff_dst_mem_p = key + "@pool_diff_dst_mem_p";
307 308
    const std::string key_pool_src_mem_p = key + "@pool_src_mem_p";
    const std::string key_pool_dst_mem_p = key + "@pool_dst_mem_p";
309 310 311
    const std::string key_pool_pd = key + "@pool_pd";
    const std::string key_pool_workspace_memory =
        key + "@pool_workspace_memory";
312

313 314 315 316 317 318 319 320 321 322 323 324 325 326
    auto user_diff_dst_memory =
        memory({{{diff_dst_tz}, memory::data_type::f32, out_grad->format()},
                mkldnn_engine},
               to_void_cast<T>(out_grad_data));

    std::shared_ptr<memory> diff_src_memory;
    std::shared_ptr<memory> diff_dst_memory;
    auto dst_memory =
        std::static_pointer_cast<memory>(dev_ctx.GetBlob(key_pool_dst_mem_p));
    PADDLE_ENFORCE(dst_memory != nullptr,
                   "Fail to find dst_memory in device context");

    primitive reorder_diff_dst;
    bool is_diff_dst_reordered = false;
327 328 329
    auto pool_bwd_p = std::static_pointer_cast<pooling_backward>(
        dev_ctx.GetBlob(key_pool_bwd_p));
    if (pool_bwd_p == nullptr) {
330 331 332 333 334
      // Retrieve src_memory/dst_memory saved in forward pass
      auto src_memory =
          std::static_pointer_cast<memory>(dev_ctx.GetBlob(key_pool_src_mem_p));
      PADDLE_ENFORCE(src_memory != nullptr,
                     "Fail to find src_memory in device context");
335 336 337 338 339 340
      // Retrieve pool_pd/pool_workspace_memory from device context
      auto pool_pd =
          std::static_pointer_cast<mkldnn::pooling_forward::primitive_desc>(
              dev_ctx.GetBlob(key_pool_pd));
      PADDLE_ENFORCE(pool_pd != nullptr,
                     "Fail to find pool_pd in device context");
341
      auto workspace_memory = std::static_pointer_cast<memory>(
342 343 344 345
          dev_ctx.GetBlob(key_pool_workspace_memory));
      PADDLE_ENFORCE(workspace_memory != nullptr,
                     "Fail to find workspace_memory in device context");

346 347 348
      // create memory descriptors for pooling
      auto diff_src_md = src_memory.get()->get_primitive_desc().desc();
      auto diff_dst_md = dst_memory.get()->get_primitive_desc().desc();
349 350 351 352 353 354 355 356 357

      auto pool_bwd_desc = mkldnn::pooling_backward::desc(
          pooling_type == "max" ? mkldnn::algorithm::pooling_max
                                : mkldnn::algorithm::pooling_avg,
          diff_src_md, diff_dst_md, strides, ksize, paddings, paddings,
          mkldnn::padding_kind::zero);
      auto pool_bwd_pd = mkldnn::pooling_backward::primitive_desc(
          pool_bwd_desc, mkldnn_engine, *pool_pd);

358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
      // reorder between user_diff_dst and pool diff_dst if needed
      diff_dst_memory = std::make_shared<memory>(user_diff_dst_memory);
      if (memory::primitive_desc(dst_memory->get_primitive_desc()) !=
          user_diff_dst_memory.get_primitive_desc()) {
        diff_dst_memory =
            std::make_shared<memory>(dst_memory.get()->get_primitive_desc());
        reorder_diff_dst = reorder(user_diff_dst_memory, *diff_dst_memory);
        is_diff_dst_reordered = true;
      }

      diff_src_memory = std::make_shared<memory>(
          pool_bwd_pd.diff_src_primitive_desc(), in_x_grad_data);

      dev_ctx.SetBlob(key_pool_diff_src_mem_p, diff_src_memory);
      dev_ctx.SetBlob(key_pool_diff_dst_mem_p, diff_dst_memory);

374
      pool_bwd_p = std::make_shared<pooling_backward>(
375
          pool_bwd_pd, *diff_dst_memory, *workspace_memory, *diff_src_memory);
376
      dev_ctx.SetBlob(key_pool_bwd_p, pool_bwd_p);
377

378 379
    } else {
      // Primitives already exist
380
      diff_src_memory = std::static_pointer_cast<memory>(
381
          dev_ctx.GetBlob(key_pool_diff_src_mem_p));
382
      PADDLE_ENFORCE(diff_src_memory != nullptr,
383
                     "Fail to find pooling src mem_p in device context");
384
      diff_dst_memory = std::static_pointer_cast<memory>(
385
          dev_ctx.GetBlob(key_pool_diff_dst_mem_p));
386
      PADDLE_ENFORCE(diff_dst_memory != nullptr,
387
                     "Fail to find pooling dst mem_p in device context");
388 389 390 391 392 393 394 395 396 397 398 399

      diff_src_memory->set_data_handle(reinterpret_cast<void*>(in_x_grad_data));
      diff_dst_memory->set_data_handle(const_cast<T*>(out_grad_data));

      // reorder between user_diff_dst and pool diff_dst if needed
      if (memory::primitive_desc(dst_memory->get_primitive_desc()) !=
          user_diff_dst_memory.get_primitive_desc()) {
        diff_dst_memory =
            std::make_shared<memory>(dst_memory.get()->get_primitive_desc());
        reorder_diff_dst = reorder(user_diff_dst_memory, *diff_dst_memory);
        is_diff_dst_reordered = true;
      }
400
    }
401

402 403 404 405
    in_x_grad_format = (memory::format)diff_src_memory->get_primitive_desc()
                           .desc()
                           .data.format;

406
    // push primitive to stream and wait until it's executed
407 408 409 410
    std::vector<mkldnn::primitive> pipeline;
    if (is_diff_dst_reordered) {
      pipeline.push_back(reorder_diff_dst);
    }
411
    pipeline.push_back(*pool_bwd_p);
412
    mkldnn::stream(mkldnn::stream::kind::eager).submit(pipeline).wait();
413 414 415

    in_x_grad->set_layout(DataLayout::kMKLDNN);
    in_x_grad->set_format(in_x_grad_format);
416 417 418 419 420 421
  }  // Compute()
};

}  // namespace operators
}  // namespace paddle

422 423
namespace ops = paddle::operators;

424
REGISTER_OP_KERNEL(pool2d, MKLDNN, ::paddle::platform::CPUPlace,
X
xiaoli.liu@intel.com 已提交
425 426 427 428
                   ops::PoolMKLDNNOpKernel<float>,
                   ops::PoolMKLDNNOpKernel<int8_t>,
                   ops::PoolMKLDNNOpKernel<uint8_t>);

429
REGISTER_OP_KERNEL(pool2d_grad, MKLDNN, ::paddle::platform::CPUPlace,
430
                   ops::PoolMKLDNNGradOpKernel<float>);