test_model.py 20.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
# copyright (c) 2020 paddlepaddle authors. all rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import division
from __future__ import print_function

import unittest

import os
import numpy as np
import shutil
import tempfile

L
Leo Chen 已提交
25
import paddle
26
from paddle import fluid
27
from paddle import to_tensor
28
from paddle.nn import Conv2d, Pool2D, Linear, ReLU, Sequential, Softmax
29

30 31
from paddle import Model
from paddle.static import InputSpec
32
from paddle.nn.layer.loss import CrossEntropyLoss
33
from paddle.metric import Accuracy
34 35 36 37
from paddle.vision.datasets import MNIST
from paddle.vision.models import LeNet
from paddle.io import DistributedBatchSampler
from paddle.hapi.model import prepare_distributed_context
38 39
from paddle.fluid.dygraph.jit import declarative
from paddle.fluid.dygraph.dygraph_to_static.program_translator import ProgramTranslator
40 41


42
class LeNetDygraph(paddle.nn.Layer):
43
    def __init__(self, num_classes=10, classifier_activation=None):
44 45 46
        super(LeNetDygraph, self).__init__()
        self.num_classes = num_classes
        self.features = Sequential(
47
            Conv2d(
48
                1, 6, 3, stride=1, padding=1),
L
LielinJiang 已提交
49
            ReLU(),
50
            Pool2D(2, 'max', 2),
51
            Conv2d(
52
                6, 16, 5, stride=1, padding=0),
L
LielinJiang 已提交
53
            ReLU(),
54 55 56 57
            Pool2D(2, 'max', 2))

        if num_classes > 0:
            self.fc = Sequential(
58 59
                Linear(400, 120), Linear(120, 84), Linear(84, 10),
                Softmax())  #Todo: accept any activation
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101

    def forward(self, inputs):
        x = self.features(inputs)

        if self.num_classes > 0:
            x = fluid.layers.flatten(x, 1)
            x = self.fc(x)
        return x


class MnistDataset(MNIST):
    def __init__(self, mode, return_label=True, sample_num=None):
        super(MnistDataset, self).__init__(mode=mode)
        self.return_label = return_label
        if sample_num:
            self.images = self.images[:sample_num]
            self.labels = self.labels[:sample_num]

    def __getitem__(self, idx):
        img, label = self.images[idx], self.labels[idx]
        img = np.reshape(img, [1, 28, 28])
        if self.return_label:
            return img, np.array(self.labels[idx]).astype('int64')
        return img,

    def __len__(self):
        return len(self.images)


def compute_acc(pred, label):
    pred = np.argmax(pred, -1)
    label = np.array(label)
    correct = pred[:, np.newaxis] == label
    return np.sum(correct) / correct.shape[0]


def dynamic_train(model, dataloader):
    optim = fluid.optimizer.Adam(
        learning_rate=0.001, parameter_list=model.parameters())
    model.train()
    for inputs, labels in dataloader:
        outputs = model(inputs)
102
        loss = CrossEntropyLoss(reduction="sum")(outputs, labels)
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
        avg_loss = fluid.layers.reduce_sum(loss)
        avg_loss.backward()
        optim.minimize(avg_loss)
        model.clear_gradients()


def dynamic_evaluate(model, dataloader):
    with fluid.dygraph.no_grad():
        model.eval()
        cnt = 0
        for inputs, labels in dataloader:
            outputs = model(inputs)

            cnt += (np.argmax(outputs.numpy(), -1)[:, np.newaxis] ==
                    labels.numpy()).astype('int').sum()

    return cnt / len(dataloader.dataset)


@unittest.skipIf(not fluid.is_compiled_with_cuda(),
                 'CPU testing is not supported')
class TestModel(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        if not fluid.is_compiled_with_cuda():
            self.skipTest('module not tested when ONLY_CPU compling')
129
        cls.device = paddle.set_device('gpu')
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
        fluid.enable_dygraph(cls.device)

        sp_num = 1280
        cls.train_dataset = MnistDataset(mode='train', sample_num=sp_num)
        cls.val_dataset = MnistDataset(mode='test', sample_num=sp_num)
        cls.test_dataset = MnistDataset(
            mode='test', return_label=False, sample_num=sp_num)

        cls.train_loader = fluid.io.DataLoader(
            cls.train_dataset, places=cls.device, batch_size=64)
        cls.val_loader = fluid.io.DataLoader(
            cls.val_dataset, places=cls.device, batch_size=64)
        cls.test_loader = fluid.io.DataLoader(
            cls.test_dataset, places=cls.device, batch_size=64)

        seed = 333
L
Leo Chen 已提交
146 147
        paddle.manual_seed(seed)
        paddle.framework.random._manual_program_seed(seed)
148 149 150 151 152 153 154

        dy_lenet = LeNetDygraph()
        cls.init_param = dy_lenet.state_dict()
        dynamic_train(dy_lenet, cls.train_loader)

        cls.acc1 = dynamic_evaluate(dy_lenet, cls.val_loader)

155 156
        cls.inputs = [InputSpec([-1, 1, 28, 28], 'float32', 'image')]
        cls.labels = [InputSpec([None, 1], 'int64', 'label')]
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173

        cls.save_dir = tempfile.mkdtemp()
        cls.weight_path = os.path.join(cls.save_dir, 'lenet')
        fluid.dygraph.save_dygraph(dy_lenet.state_dict(), cls.weight_path)

        fluid.disable_dygraph()

    @classmethod
    def tearDownClass(cls):
        shutil.rmtree(cls.save_dir)

    def test_fit_dygraph(self):
        self.fit(True)

    def test_fit_static(self):
        self.fit(False)

174 175 176 177 178 179
    def test_fit_dynamic_with_rank(self):
        self.fit(True, 2, 0)

    def test_fit_static_with_rank(self):
        self.fit(False, 2, 0)

180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
    def test_evaluate_dygraph(self):
        self.evaluate(True)

    def test_evaluate_static(self):
        self.evaluate(False)

    def test_predict_dygraph(self):
        self.predict(True)

    def test_predict_static(self):
        self.predict(False)

    def test_prepare_context(self):
        prepare_distributed_context()

195
    def fit(self, dynamic, num_replicas=None, rank=None):
196 197
        fluid.enable_dygraph(self.device) if dynamic else None
        seed = 333
L
Leo Chen 已提交
198 199
        paddle.manual_seed(seed)
        paddle.framework.random._manual_program_seed(seed)
200

201
        net = LeNet(classifier_activation=None)
202
        optim_new = fluid.optimizer.Adam(
203 204
            learning_rate=0.001, parameter_list=net.parameters())
        model = Model(net, inputs=self.inputs, labels=self.labels)
205 206
        model.prepare(
            optim_new,
207
            loss=CrossEntropyLoss(reduction="sum"),
208
            metrics=Accuracy())
209 210 211 212 213 214
        model.fit(self.train_dataset, batch_size=64, shuffle=False)

        result = model.evaluate(self.val_dataset, batch_size=64)
        np.testing.assert_allclose(result['acc'], self.acc1)

        train_sampler = DistributedBatchSampler(
215 216 217 218 219
            self.train_dataset,
            batch_size=64,
            shuffle=False,
            num_replicas=num_replicas,
            rank=rank)
220
        val_sampler = DistributedBatchSampler(
221 222 223 224 225
            self.val_dataset,
            batch_size=64,
            shuffle=False,
            num_replicas=num_replicas,
            rank=rank)
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243

        train_loader = fluid.io.DataLoader(
            self.train_dataset,
            batch_sampler=train_sampler,
            places=self.device,
            return_list=True)

        val_loader = fluid.io.DataLoader(
            self.val_dataset,
            batch_sampler=val_sampler,
            places=self.device,
            return_list=True)

        model.fit(train_loader, val_loader)
        fluid.disable_dygraph() if dynamic else None

    def evaluate(self, dynamic):
        fluid.enable_dygraph(self.device) if dynamic else None
244 245
        model = Model(LeNet(), self.inputs, self.labels)
        model.prepare(metrics=Accuracy())
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
        model.load(self.weight_path)
        result = model.evaluate(self.val_dataset, batch_size=64)
        np.testing.assert_allclose(result['acc'], self.acc1)

        sampler = DistributedBatchSampler(
            self.val_dataset, batch_size=64, shuffle=False)

        val_loader = fluid.io.DataLoader(
            self.val_dataset,
            batch_sampler=sampler,
            places=self.device,
            return_list=True)

        model.evaluate(val_loader)

        fluid.disable_dygraph() if dynamic else None

    def predict(self, dynamic):
        fluid.enable_dygraph(self.device) if dynamic else None
265 266
        model = Model(LeNet(), self.inputs)
        model.prepare()
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
        model.load(self.weight_path)
        output = model.predict(
            self.test_dataset, batch_size=64, stack_outputs=True)
        np.testing.assert_equal(output[0].shape[0], len(self.test_dataset))

        acc = compute_acc(output[0], self.val_dataset.labels)
        np.testing.assert_allclose(acc, self.acc1)

        sampler = DistributedBatchSampler(
            self.test_dataset, batch_size=64, shuffle=False)

        test_loader = fluid.io.DataLoader(
            self.test_dataset,
            batch_sampler=sampler,
            places=self.device,
            return_list=True)

        model.evaluate(test_loader)

        fluid.disable_dygraph() if dynamic else None


289
class MyModel(paddle.nn.Layer):
290
    def __init__(self, classifier_activation='softmax'):
291
        super(MyModel, self).__init__()
292 293
        self._fc = Linear(20, 10)
        self._act = Softmax()  #Todo: accept any activation
294 295 296

    def forward(self, x):
        y = self._fc(x)
297
        y = self._act(y)
298 299 300 301 302
        return y


class TestModelFunction(unittest.TestCase):
    def set_seed(self, seed=1024):
L
Leo Chen 已提交
303 304
        paddle.manual_seed(seed)
        paddle.framework.random._manual_program_seed(seed)
305 306 307 308 309 310 311 312 313

    def test_train_batch(self, dynamic=True):
        dim = 20
        data = np.random.random(size=(4, dim)).astype(np.float32)
        label = np.random.randint(0, 10, size=(4, 1)).astype(np.int64)

        def get_expect():
            fluid.enable_dygraph(fluid.CPUPlace())
            self.set_seed()
314
            m = MyModel(classifier_activation=None)
315 316 317
            optim = fluid.optimizer.SGD(learning_rate=0.001,
                                        parameter_list=m.parameters())
            m.train()
318 319
            output = m(to_tensor(data))
            loss = CrossEntropyLoss(reduction='sum')(output, to_tensor(label))
320 321 322 323 324 325 326 327 328
            avg_loss = fluid.layers.reduce_sum(loss)
            avg_loss.backward()
            optim.minimize(avg_loss)
            m.clear_gradients()
            fluid.disable_dygraph()
            return avg_loss.numpy()

        ref = get_expect()
        for dynamic in [True, False]:
329
            device = paddle.set_device('cpu')
330 331 332
            fluid.enable_dygraph(device) if dynamic else None
            self.set_seed()

333
            net = MyModel(classifier_activation=None)
334
            optim2 = fluid.optimizer.SGD(learning_rate=0.001,
335
                                         parameter_list=net.parameters())
336

337 338
            inputs = [InputSpec([None, dim], 'float32', 'x')]
            labels = [InputSpec([None, 1], 'int64', 'label')]
339
            model = Model(net, inputs, labels)
340
            model.prepare(optim2, loss=CrossEntropyLoss(reduction="sum"))
341 342 343 344
            loss, = model.train_batch([data], [label])
            np.testing.assert_allclose(loss.flatten(), ref.flatten())
            fluid.disable_dygraph() if dynamic else None

345
    def test_test_batch(self):
346 347 348 349 350 351 352 353
        dim = 20
        data = np.random.random(size=(4, dim)).astype(np.float32)

        def get_expect():
            fluid.enable_dygraph(fluid.CPUPlace())
            self.set_seed()
            m = MyModel()
            m.eval()
354
            output = m(to_tensor(data))
355 356 357 358 359
            fluid.disable_dygraph()
            return output.numpy()

        ref = get_expect()
        for dynamic in [True, False]:
360
            device = paddle.set_device('cpu')
361 362
            fluid.enable_dygraph(device) if dynamic else None
            self.set_seed()
363
            net = MyModel()
364
            inputs = [InputSpec([None, dim], 'float32', 'x')]
365 366
            model = Model(net, inputs)
            model.prepare()
367 368
            out, = model.test_batch([data])

369
            np.testing.assert_allclose(out, ref, rtol=1e-6)
370 371 372 373 374
            fluid.disable_dygraph() if dynamic else None

    def test_save_load(self):
        path = tempfile.mkdtemp()
        for dynamic in [True, False]:
375
            device = paddle.set_device('cpu')
376
            fluid.enable_dygraph(device) if dynamic else None
377
            net = MyModel(classifier_activation=None)
378 379
            inputs = [InputSpec([None, 20], 'float32', 'x')]
            labels = [InputSpec([None, 1], 'int64', 'label')]
380
            optim = fluid.optimizer.SGD(learning_rate=0.001,
381 382
                                        parameter_list=net.parameters())
            model = Model(net, inputs, labels)
383
            model.prepare(
384
                optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))
385 386 387 388 389
            model.save(path + '/test')
            model.load(path + '/test')
            shutil.rmtree(path)
            fluid.disable_dygraph() if dynamic else None

390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
    def test_dynamic_load(self):
        mnist_data = MnistDataset(mode='train')
        for new_optimizer in [True, False]:
            path = tempfile.mkdtemp()
            paddle.disable_static()
            net = LeNet()
            inputs = [InputSpec([None, 1, 28, 28], 'float32', 'x')]
            labels = [InputSpec([None, 1], 'int64', 'label')]
            if new_optimizer:
                optim = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=net.parameters())
            else:
                optim = fluid.optimizer.Adam(
                    learning_rate=0.001, parameter_list=net.parameters())
            model = Model(net, inputs, labels)
            model.prepare(
                optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))
            model.fit(mnist_data, batch_size=64, verbose=0)
            model.save(path + '/test')
            model.load(path + '/test')
            shutil.rmtree(path)
            paddle.enable_static()

413 414
    def test_dynamic_save_static_load(self):
        path = tempfile.mkdtemp()
415
        # dynamic saving
416
        device = paddle.set_device('cpu')
417
        fluid.enable_dygraph(device)
418 419 420
        inputs = [InputSpec([None, 20], 'float32', 'x')]
        labels = [InputSpec([None, 1], 'int64', 'label')]
        model = Model(MyModel(classifier_activation=None), inputs, labels)
421 422
        optim = fluid.optimizer.SGD(learning_rate=0.001,
                                    parameter_list=model.parameters())
423
        model.prepare(optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))
424 425
        model.save(path + '/test')
        fluid.disable_dygraph()
426

427 428
        inputs = [InputSpec([None, 20], 'float32', 'x')]
        labels = [InputSpec([None, 1], 'int64', 'label')]
429
        model = Model(MyModel(classifier_activation=None), inputs, labels)
430 431
        optim = fluid.optimizer.SGD(learning_rate=0.001,
                                    parameter_list=model.parameters())
432
        model.prepare(optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))
433 434 435 436 437 438
        model.load(path + '/test')
        shutil.rmtree(path)

    def test_static_save_dynamic_load(self):
        path = tempfile.mkdtemp()

439
        net = MyModel(classifier_activation=None)
440 441
        inputs = [InputSpec([None, 20], 'float32', 'x')]
        labels = [InputSpec([None, 1], 'int64', 'label')]
442
        optim = fluid.optimizer.SGD(learning_rate=0.001,
443 444
                                    parameter_list=net.parameters())
        model = Model(net, inputs, labels)
445
        model.prepare(optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))
446 447
        model.save(path + '/test')

448
        device = paddle.set_device('cpu')
449 450
        fluid.enable_dygraph(device)  #if dynamic else None

451
        net = MyModel(classifier_activation=None)
452 453
        inputs = [InputSpec([None, 20], 'float32', 'x')]
        labels = [InputSpec([None, 1], 'int64', 'label')]
454
        optim = fluid.optimizer.SGD(learning_rate=0.001,
455 456
                                    parameter_list=net.parameters())
        model = Model(net, inputs, labels)
457
        model.prepare(optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))
458 459 460 461 462 463
        model.load(path + '/test')
        shutil.rmtree(path)
        fluid.disable_dygraph()

    def test_parameters(self):
        for dynamic in [True, False]:
464
            device = paddle.set_device('cpu')
465
            fluid.enable_dygraph(device) if dynamic else None
466
            net = MyModel()
467
            inputs = [InputSpec([None, 20], 'float32', 'x')]
468 469
            model = Model(net, inputs)
            model.prepare()
470 471 472 473 474
            params = model.parameters()
            self.assertTrue(params[0].shape[0] == 20)
            self.assertTrue(params[0].shape[1] == 10)
            fluid.disable_dygraph() if dynamic else None

L
LielinJiang 已提交
475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
    def test_summary(self):
        def _get_param_from_state_dict(state_dict):
            params = 0
            for k, v in state_dict.items():
                params += np.prod(v.numpy().shape)
            return params

        for dynamic in [True, False]:
            device = paddle.set_device('cpu')
            fluid.enable_dygraph(device) if dynamic else None
            net = MyModel()
            inputs = [InputSpec([None, 20], 'float32', 'x')]
            model = Model(net, inputs)
            model.prepare()
            params_info = model.summary()
            gt_params = _get_param_from_state_dict(net.state_dict())

            np.testing.assert_allclose(params_info['total_params'], gt_params)
            print(params_info)

495 496
            model.summary(input_size=(20))
            model.summary(input_size=[(20)])
L
LielinJiang 已提交
497
            model.summary(input_size=(20), dtype='float32')
498

L
LielinJiang 已提交
499 500
    def test_summary_nlp(self):
        paddle.enable_static()
L
LielinJiang 已提交
501 502 503 504 505 506 507
        nlp_net = paddle.nn.GRU(input_size=2,
                                hidden_size=3,
                                num_layers=3,
                                direction="bidirectional")
        paddle.summary(nlp_net, (1, 1, 2))
        rnn = paddle.nn.LSTM(16, 32, 2)
        paddle.summary(rnn, [(-1, 23, 16), ((2, None, 32), (2, -1, 32))])
L
LielinJiang 已提交
508 509 510 511

    def test_summary_error(self):
        with self.assertRaises(TypeError):
            nlp_net = paddle.nn.GRU(input_size=2, hidden_size=3, num_layers=3)
L
LielinJiang 已提交
512
            paddle.summary(nlp_net, (1, 1, '2'))
L
LielinJiang 已提交
513 514 515 516 517 518 519

        with self.assertRaises(ValueError):
            nlp_net = paddle.nn.GRU(input_size=2, hidden_size=3, num_layers=3)
            paddle.summary(nlp_net, (-1, -1))

        paddle.disable_static()
        nlp_net = paddle.nn.GRU(input_size=2, hidden_size=3, num_layers=3)
L
LielinJiang 已提交
520
        paddle.summary(nlp_net, (1, 1, 2))
L
LielinJiang 已提交
521

522
    def test_export_deploy_model(self):
523
        for dynamic in [True, False]:
524
            paddle.disable_static() if dynamic else None
525 526
            prog_translator = ProgramTranslator()
            prog_translator.enable(False) if not dynamic else None
527
            net = LeNet()
528
            inputs = [InputSpec([None, 1, 28, 28], 'float32', 'x')]
529 530 531 532 533 534 535
            model = Model(net, inputs)
            model.prepare()
            save_dir = tempfile.mkdtemp()
            if not os.path.exists(save_dir):
                os.makedirs(save_dir)
            tensor_img = np.array(
                np.random.random((1, 1, 28, 28)), dtype=np.float32)
536

537
            model.save(save_dir, training=False)
538
            ori_results = model.test_batch(tensor_img)
539
            fluid.disable_dygraph() if dynamic else None
540

541 542 543 544 545 546 547 548 549 550 551 552 553 554
            place = fluid.CPUPlace() if not fluid.is_compiled_with_cuda(
            ) else fluid.CUDAPlace(0)
            new_scope = fluid.Scope()
            with fluid.scope_guard(new_scope):
                exe = fluid.Executor(place)
                [inference_program, feed_target_names, fetch_targets] = (
                    fluid.io.load_inference_model(
                        dirname=save_dir, executor=exe))
                results = exe.run(inference_program,
                                  feed={feed_target_names[0]: tensor_img},
                                  fetch_list=fetch_targets)
                np.testing.assert_allclose(
                    results, ori_results, rtol=1e-5, atol=1e-7)
                shutil.rmtree(save_dir)
555
            paddle.enable_static()
556 557


558 559 560 561
class TestRaiseError(unittest.TestCase):
    def test_input_without_name(self):
        net = MyModel(classifier_activation=None)

562 563
        inputs = [InputSpec([None, 10], 'float32')]
        labels = [InputSpec([None, 1], 'int64', 'label')]
564 565 566
        with self.assertRaises(ValueError):
            model = Model(net, inputs, labels)

567 568 569 570 571 572 573 574
    def test_input_without_input_spec(self):
        for dynamic in [True, False]:
            paddle.disable_static() if dynamic else None
            net = MyModel(classifier_activation=None)
            with self.assertRaises(TypeError):
                model = Model(net)
            paddle.enable_static()

575

576 577
if __name__ == '__main__':
    unittest.main()