adam_op.h 19.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
Y
Yang Yu 已提交
16
#include <math.h>  // for sqrt in CPU and CUDA
17
#include <Eigen/Dense>
18
#include <string>
S
sneaxiy 已提交
19
#include <unordered_map>
S
sneaxiy 已提交
20
#include <vector>
Y
Yi Wang 已提交
21
#include "paddle/fluid/framework/op_registry.h"
Q
Qiao Longfei 已提交
22
#include "paddle/fluid/framework/threadpool.h"
S
sneaxiy 已提交
23
#include "paddle/fluid/operators/math/algorithm.h"
Y
Yi Wang 已提交
24 25
#include "paddle/fluid/operators/math/selected_rows_functor.h"
#include "paddle/fluid/platform/for_range.h"
26 27 28 29

namespace paddle {
namespace operators {

T
wip  
typhoonzero 已提交
30 31
namespace scatter = paddle::operators::math::scatter;

32 33 34 35 36 37 38
static inline float GetAttrFromTensor(const framework::Tensor* tensor) {
  const float* tensor_data = tensor->data<float>();
  framework::Tensor cpu_tensor;
  if (platform::is_gpu_place(tensor->place())) {
    TensorCopySync(*tensor, platform::CPUPlace(), &cpu_tensor);
    tensor_data = cpu_tensor.data<float>();
  }
Y
yinhaofeng 已提交
39 40 41 42
  if (platform::is_xpu_place(tensor->place())) {
    TensorCopySync(*tensor, platform::CPUPlace(), &cpu_tensor);
    tensor_data = cpu_tensor.data<float>();
  }
43 44 45
  return tensor_data[0];
}

Y
Yibing Liu 已提交
46 47 48 49 50 51 52
class AdamOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override;
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override;
53 54 55
  framework::OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const framework::Tensor& tensor,
      const framework::OpKernelType& expected_kernel_type) const override;
Y
Yibing Liu 已提交
56 57
};

58 59 60 61
struct GPUAdam;
struct CPUAdam;

template <typename T, typename Flavour>
A
Aurelius84 已提交
62
class AdamFunctor;
63

A
Aurelius84 已提交
64 65 66
template <typename T>
class AdamFunctor<T, GPUAdam> {
 private:
Y
Yang Yu 已提交
67 68 69 70 71 72 73 74 75 76 77 78 79
  T beta1_;
  T beta2_;
  T epsilon_;

  const T* beta1_pow_;
  const T* beta2_pow_;
  const T* moment1_;
  T* moment1_out_;
  const T* moment2_;
  T* moment2_out_;
  const T* lr_;
  const T* grad_;
  const T* param_;
Y
Yang Yu 已提交
80
  T* param_out_;
Y
Yang Yu 已提交
81

A
Aurelius84 已提交
82
 public:
Y
Yang Yu 已提交
83 84
  AdamFunctor(T beta1, T beta2, T epsilon, const T* beta1_pow,
              const T* beta2_pow, const T* mom1, T* mom1_out, const T* mom2,
Y
Yang Yu 已提交
85 86
              T* mom2_out, const T* lr, const T* grad, const T* param,
              T* param_out)
Y
Yang Yu 已提交
87 88 89 90 91 92 93 94 95 96 97
      : beta1_(beta1),
        beta2_(beta2),
        epsilon_(epsilon),
        beta1_pow_(beta1_pow),
        beta2_pow_(beta2_pow),
        moment1_(mom1),
        moment1_out_(mom1_out),
        moment2_(mom2),
        moment2_out_(mom2_out),
        lr_(lr),
        grad_(grad),
Y
Yang Yu 已提交
98 99
        param_(param),
        param_out_(param_out) {}
Y
Yang Yu 已提交
100

Y
Yang Yu 已提交
101
  inline HOSTDEVICE void operator()(size_t i) const {
Y
Yang Yu 已提交
102 103 104 105 106 107 108
    // Merge all memory access together.
    T g = grad_[i];
    T mom1 = moment1_[i];
    T mom2 = moment2_[i];
    T lr = *lr_;
    T beta1_pow = *beta1_pow_;
    T beta2_pow = *beta2_pow_;
Y
Yang Yu 已提交
109
    T p = param_[i];
Y
Yang Yu 已提交
110 111

    // Calculation
Y
Yang Yu 已提交
112
    lr *= sqrt(1 - beta2_pow) / (1 - beta1_pow);
113

Y
Yang Yu 已提交
114 115
    mom1 = beta1_ * mom1 + (1 - beta1_) * g;
    mom2 = beta2_ * mom2 + (1 - beta2_) * g * g;
M
MRXLT 已提交
116
    p -= lr * (mom1 / (sqrt(mom2) + epsilon_ * sqrt(1 - beta2_pow)));
Y
Yang Yu 已提交
117 118 119 120

    // Write back to global memory
    moment1_out_[i] = mom1;
    moment2_out_[i] = mom2;
Y
Yang Yu 已提交
121
    param_out_[i] = p;
Y
Yang Yu 已提交
122 123 124
  }
};

125
template <typename T>
A
Aurelius84 已提交
126 127
class AdamFunctor<T, CPUAdam> {
 private:
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
  T beta1_;
  T beta2_;
  T epsilon_;

  const T* beta1_pow_;
  const T* beta2_pow_;
  const T* moment1_;
  T* moment1_out_;
  const T* moment2_;
  T* moment2_out_;
  const T* lr_;
  const T* grad_;
  const T* param_;
  T* param_out_;

A
Aurelius84 已提交
143
 public:
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
  AdamFunctor(T beta1, T beta2, T epsilon, const T* beta1_pow,
              const T* beta2_pow, const T* mom1, T* mom1_out, const T* mom2,
              T* mom2_out, const T* lr, const T* grad, const T* param,
              T* param_out)
      : beta1_(beta1),
        beta2_(beta2),
        epsilon_(epsilon),
        beta1_pow_(beta1_pow),
        beta2_pow_(beta2_pow),
        moment1_(mom1),
        moment1_out_(mom1_out),
        moment2_(mom2),
        moment2_out_(mom2_out),
        lr_(lr),
        grad_(grad),
        param_(param),
        param_out_(param_out) {}

  void operator()(size_t numel) const {
    Eigen::Map<const Eigen::Array<T, 1, Eigen::Dynamic>> g{
        grad_, static_cast<Eigen::Index>(numel)};
    Eigen::Map<const Eigen::Array<T, 1, Eigen::Dynamic>> mom1{
        moment1_, static_cast<Eigen::Index>(numel)};
    Eigen::Map<const Eigen::Array<T, 1, Eigen::Dynamic>> mom2{
        moment2_, static_cast<Eigen::Index>(numel)};
    Eigen::Map<const Eigen::Array<T, 1, Eigen::Dynamic>> param{
        param_, static_cast<Eigen::Index>(numel)};

    Eigen::Map<Eigen::Array<T, 1, Eigen::Dynamic>> param_out{
        param_out_, static_cast<Eigen::Index>(numel)};
    Eigen::Map<Eigen::Array<T, 1, Eigen::Dynamic>> moment1_out{
        moment1_out_, static_cast<Eigen::Index>(numel)};
    Eigen::Map<Eigen::Array<T, 1, Eigen::Dynamic>> moment2_out{
        moment2_out_, static_cast<Eigen::Index>(numel)};

    T lr = *lr_;
    T beta1_pow = *beta1_pow_;
    T beta2_pow = *beta2_pow_;

    // Calculation
    lr *= sqrt(1 - beta2_pow) / (1 - beta1_pow);

    moment1_out = beta1_ * mom1 + (1 - beta1_) * g;
    moment2_out = beta2_ * mom2 + (1 - beta2_) * g * g;
M
MRXLT 已提交
188 189 190
    param_out = param -
                lr * (moment1_out /
                      (moment2_out.sqrt() + epsilon_ * sqrt(1 - beta2_pow)));
191 192 193
  }
};

194
template <typename T, typename Flavour>
A
Aurelius84 已提交
195
class SparseAdamFunctor;
196

T
wip  
typhoonzero 已提交
197
template <typename T>
A
Aurelius84 已提交
198 199
class SparseAdamFunctor<T, GPUAdam> {
 private:
T
wip  
typhoonzero 已提交
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
  T beta1_;
  T beta2_;
  T epsilon_;

  const T* beta1_pow_;
  const T* beta2_pow_;
  const T* moment1_;
  T* moment1_out_;
  const T* moment2_;
  T* moment2_out_;
  const T* lr_;
  const T* grad_;
  const T* param_;
  T* param_out_;

  const int64_t* rows_;
  int64_t row_numel_;
S
sneaxiy 已提交
217
  int64_t row_count_;
Q
Qiao Longfei 已提交
218
  bool lazy_mode_;
T
wip  
typhoonzero 已提交
219

A
Aurelius84 已提交
220
 public:
T
wip  
typhoonzero 已提交
221 222 223 224
  SparseAdamFunctor(T beta1, T beta2, T epsilon, const T* beta1_pow,
                    const T* beta2_pow, const T* mom1, T* mom1_out,
                    const T* mom2, T* mom2_out, const T* lr, const T* grad,
                    const T* param, T* param_out, const int64_t* rows,
Q
Qiao Longfei 已提交
225
                    int64_t row_numel, int64_t row_count, bool lazy_mode)
T
wip  
typhoonzero 已提交
226 227 228 229 230 231 232 233 234 235 236 237 238 239
      : beta1_(beta1),
        beta2_(beta2),
        epsilon_(epsilon),
        beta1_pow_(beta1_pow),
        beta2_pow_(beta2_pow),
        moment1_(mom1),
        moment1_out_(mom1_out),
        moment2_(mom2),
        moment2_out_(mom2_out),
        lr_(lr),
        grad_(grad),
        param_(param),
        param_out_(param_out),
        rows_(rows),
S
sneaxiy 已提交
240
        row_numel_(row_numel),
Q
Qiao Longfei 已提交
241
        row_count_(row_count),
Q
Qiao Longfei 已提交
242
        lazy_mode_(lazy_mode) {}
S
sneaxiy 已提交
243

Q
Qiao Longfei 已提交
244
  inline HOSTDEVICE void adam_update(size_t i, T g) const {
S
sneaxiy 已提交
245 246 247 248
    // The following code is the same as dense
    T mom1 = moment1_[i];
    T mom2 = moment2_[i];
    T lr = *lr_;
T
typhoonzero 已提交
249 250
    T beta1_pow = *beta1_pow_;
    T beta2_pow = *beta2_pow_;
S
sneaxiy 已提交
251 252 253 254 255 256 257
    T p = param_[i];

    // Calculation
    lr *= sqrt(1 - beta2_pow) / (1 - beta1_pow);

    mom1 = beta1_ * mom1 + (1 - beta1_) * g;
    mom2 = beta2_ * mom2 + (1 - beta2_) * g * g;
M
MRXLT 已提交
258
    p -= lr * (mom1 / (sqrt(mom2) + epsilon_ * sqrt(1 - beta2_pow)));
S
sneaxiy 已提交
259 260 261 262 263

    // Write back to global memory
    moment1_out_[i] = mom1;
    moment2_out_[i] = mom2;
    param_out_[i] = p;
T
wip  
typhoonzero 已提交
264
  }
Q
Qiao Longfei 已提交
265 266 267 268

  inline HOSTDEVICE void operator()(size_t i) const {
    auto row_idx =
        math::BinarySearch<int64_t>(rows_, row_count_, i / row_numel_);
Q
Qiao Longfei 已提交
269 270 271
    if (lazy_mode_ && row_idx < 0) {
      return;
    } else {
Q
Qiao Longfei 已提交
272 273 274
      T g = row_idx >= 0 ? grad_[row_idx * row_numel_ + i % row_numel_] : 0;
      adam_update(i, g);
    }
Q
Qiao Longfei 已提交
275
  }
T
wip  
typhoonzero 已提交
276 277
};

M
minqiyang 已提交
278
template <typename T>
A
Aurelius84 已提交
279 280
class SparseAdamFunctor<T, CPUAdam> {
 private:
M
minqiyang 已提交
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
  T beta1_;
  T beta2_;
  T epsilon_;

  const T* beta1_pow_;
  const T* beta2_pow_;
  const T* moment1_;
  T* moment1_out_;
  const T* moment2_;
  T* moment2_out_;
  const T* lr_;
  const T* grad_;
  const T* param_;
  T* param_out_;

  const int64_t* rows_;
  int64_t row_numel_;
  int64_t row_count_;

A
Aurelius84 已提交
300
 public:
M
minqiyang 已提交
301 302 303 304
  SparseAdamFunctor(T beta1, T beta2, T epsilon, const T* beta1_pow,
                    const T* beta2_pow, const T* mom1, T* mom1_out,
                    const T* mom2, T* mom2_out, const T* lr, const T* grad,
                    const T* param, T* param_out, const int64_t* rows,
305
                    int64_t row_numel, int64_t row_count, bool lazy_mode)
M
minqiyang 已提交
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
      : beta1_(beta1),
        beta2_(beta2),
        epsilon_(epsilon),
        beta1_pow_(beta1_pow),
        beta2_pow_(beta2_pow),
        moment1_(mom1),
        moment1_out_(mom1_out),
        moment2_(mom2),
        moment2_out_(mom2_out),
        lr_(lr),
        grad_(grad),
        param_(param),
        param_out_(param_out),
        rows_(rows),
        row_numel_(row_numel),
        row_count_(row_count) {}

323 324 325 326 327 328 329 330 331 332 333 334 335 336
  inline HOSTDEVICE void adam_update(size_t i, T g) const {
    // The following code is the same as dense
    T mom1 = moment1_[i];
    T mom2 = moment2_[i];
    T lr = *lr_;
    T beta1_pow = *beta1_pow_;
    T beta2_pow = *beta2_pow_;
    T p = param_[i];

    // Calculation
    lr *= sqrt(1 - beta2_pow) / (1 - beta1_pow);

    mom1 = beta1_ * mom1 + (1 - beta1_) * g;
    mom2 = beta2_ * mom2 + (1 - beta2_) * g * g;
M
MRXLT 已提交
337
    p -= lr * (mom1 / (sqrt(mom2) + epsilon_ * sqrt(1 - beta2_pow)));
338 339 340 341 342 343 344

    // Write back to global memory
    moment1_out_[i] = mom1;
    moment2_out_[i] = mom2;
    param_out_[i] = p;
  }

M
minqiyang 已提交
345 346 347 348 349 350
  inline void operator()(size_t numel) const {
    // lr could be reuse
    T lr = *lr_;
    T beta1_pow = *beta1_pow_;
    T beta2_pow = *beta2_pow_;
    lr *= sqrt(1 - beta2_pow) / (1 - beta1_pow);
S
sneaxiy 已提交
351
    int64_t row_count = static_cast<int64_t>(numel / row_numel_);
M
minqiyang 已提交
352

S
sneaxiy 已提交
353
    for (int64_t i = 0, j = 0; i != row_count; ++i) {
M
minqiyang 已提交
354
      if (i == *(rows_ + j)) {
S
sneaxiy 已提交
355
        for (int64_t k = 0; k != row_numel_; ++k) {
M
Fix bug  
minqiyang 已提交
356
          T g = grad_[j * row_numel_ + k];
M
minqiyang 已提交
357
          adam_update(i * row_numel_ + k, g);
M
Fix bug  
minqiyang 已提交
358
        }
M
minqiyang 已提交
359 360
        ++j;
      } else {
S
sneaxiy 已提交
361
        for (int64_t k = 0; k != row_numel_; ++k) {
M
Fix bug  
minqiyang 已提交
362 363 364 365 366 367 368 369 370 371 372 373 374
          T mom1 = moment1_[i * row_numel_ + k];
          T mom2 = moment2_[i * row_numel_ + k];
          T p = param_[i * row_numel_ + k];

          mom1 = beta1_ * mom1;
          mom2 = beta2_ * mom2;

          p -= lr * (mom1 / (sqrt(mom2) + epsilon_));
          // Write back to global memory
          moment1_out_[i * row_numel_ + k] = mom1;
          moment2_out_[i * row_numel_ + k] = mom2;
          param_out_[i * row_numel_ + k] = p;
        }
M
minqiyang 已提交
375 376 377 378 379
      }
    }
  }
};

Q
QI JUN 已提交
380
template <typename DeviceContext, typename T>
381 382 383
class AdamOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
C
chengduo 已提交
384
    const auto* param_var = ctx.InputVar("Param");
385 386 387 388 389 390
    PADDLE_ENFORCE_EQ(param_var->IsType<framework::LoDTensor>(), true,
                      platform::errors::InvalidArgument(
                          "The Var(%s)'s type should be LoDTensor, "
                          "but the received is %s",
                          ctx.InputNames("Param").front(),
                          framework::ToTypeName(param_var->Type())));
C
chengduo 已提交
391

Y
Yang Yu 已提交
392
    using paddle::framework::LoDTensor;
393

394 395
    int64_t min_row_size_to_use_multithread =
        ctx.Attr<int64_t>("min_row_size_to_use_multithread");
Q
Qiao Longfei 已提交
396
    bool lazy_mode = ctx.Attr<bool>("lazy_mode");
397
    T epsilon = static_cast<T>(ctx.Attr<float>("epsilon"));
398
    auto* param = ctx.Input<LoDTensor>("Param");
T
wip  
typhoonzero 已提交
399
    auto* grad_var = ctx.InputVar("Grad");
400 401 402 403 404 405 406 407 408 409 410 411
    auto* mom1 = ctx.Input<LoDTensor>("Moment1");
    auto* mom2 = ctx.Input<LoDTensor>("Moment2");
    auto* lr = ctx.Input<LoDTensor>("LearningRate");

    auto* beta1_pow = ctx.Input<LoDTensor>("Beta1Pow");
    auto* beta2_pow = ctx.Input<LoDTensor>("Beta2Pow");

    auto* param_out = ctx.Output<LoDTensor>("ParamOut");
    auto* mom1_out = ctx.Output<LoDTensor>("Moment1Out");
    auto* mom2_out = ctx.Output<LoDTensor>("Moment2Out");
    auto* beta1_pow_out = ctx.Output<LoDTensor>("Beta1PowOut");
    auto* beta2_pow_out = ctx.Output<LoDTensor>("Beta2PowOut");
Y
Yang Yu 已提交
412

413 414 415
    T beta1 = static_cast<T>(ctx.Attr<float>("beta1"));
    if (ctx.HasInput("Beta1Tensor")) {
      auto* beta1_tensor = ctx.Input<framework::Tensor>("Beta1Tensor");
W
wangchaochaohu 已提交
416 417 418 419
      PADDLE_ENFORCE_EQ(beta1_tensor->numel(), 1,
                        platform::errors::InvalidArgument(
                            "Input(Beta1Tensor) size must be 1, but get %d",
                            beta1_tensor->numel()));
420 421 422 423 424
      beta1 = static_cast<T>(GetAttrFromTensor(beta1_tensor));
    }
    T beta2 = static_cast<T>(ctx.Attr<float>("beta2"));
    if (ctx.HasInput("Beta2Tensor")) {
      auto* beta2_tensor = ctx.Input<framework::Tensor>("Beta2Tensor");
W
wangchaochaohu 已提交
425 426 427 428
      PADDLE_ENFORCE_EQ(beta2_tensor->numel(), 1,
                        platform::errors::InvalidArgument(
                            "Input(Beta2Tensor) size must be 1, but get %d",
                            beta2_tensor->numel()));
429 430
      beta2 = static_cast<T>(GetAttrFromTensor(beta2_tensor));
    }
431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
    VLOG(3) << "beta1_pow.numel() : " << beta1_pow->numel()
            << "beta2_pow.numel() : " << beta2_pow->numel();
    VLOG(3) << "param.numel(): " << param->numel();

    PADDLE_ENFORCE_EQ(beta1_pow_out->numel(), 1,
                      platform::errors::InvalidArgument(
                          "beta1 pow output size should be 1, but received "
                          "value is:%d.",
                          beta1_pow_out->numel()));

    PADDLE_ENFORCE_EQ(beta2_pow_out->numel(), 1,
                      platform::errors::InvalidArgument(
                          "beta2 pow output size should be 1, but received "
                          "value is:%d.",
                          beta2_pow_out->numel()));
446

T
wip  
typhoonzero 已提交
447
    if (grad_var->IsType<framework::LoDTensor>()) {
448 449 450 451 452 453 454 455 456 457 458 459 460 461
      auto* grad = ctx.Input<LoDTensor>("Grad");

      AdamFunctor<T, CPUAdam> functor(
          beta1, beta2, epsilon, beta1_pow->data<T>(), beta2_pow->data<T>(),
          mom1->data<T>(), mom1_out->mutable_data<T>(ctx.GetPlace()),
          mom2->data<T>(), mom2_out->mutable_data<T>(ctx.GetPlace()),
          lr->data<T>(), grad->data<T>(), param->data<T>(),
          param_out->mutable_data<T>(ctx.GetPlace()));
      functor(param->numel());
      beta1_pow_out->mutable_data<T>(ctx.GetPlace())[0] =
          beta1 * beta1_pow->data<T>()[0];
      beta2_pow_out->mutable_data<T>(ctx.GetPlace())[0] =
          beta2 * beta2_pow->data<T>()[0];

T
wip  
typhoonzero 已提交
462
    } else if (grad_var->IsType<framework::SelectedRows>()) {
463 464
      auto* grad = ctx.Input<framework::SelectedRows>("Grad");
      if (grad->rows().size() == 0) {
M
minqiyang 已提交
465
        VLOG(3) << "grad row size is 0!!";
466 467
        return;
      }
S
sneaxiy 已提交
468

469
      std::vector<int64_t> cpu_rows(grad->rows().begin(), grad->rows().end());
S
sneaxiy 已提交
470 471 472 473 474 475 476 477
      bool is_strict_sorted = true;
      for (size_t i = 1; i < cpu_rows.size(); ++i) {
        if (cpu_rows[i - 1] >= cpu_rows[i]) {
          is_strict_sorted = false;
          break;
        }
      }

S
sneaxiy 已提交
478
      framework::SelectedRows tmp_grad_merge;
S
sneaxiy 已提交
479 480
      const framework::SelectedRows* grad_merge_ptr;
      if (is_strict_sorted) {
481
        grad_merge_ptr = grad;
S
sneaxiy 已提交
482 483 484 485
      } else {
        // merge duplicated rows if any.
        // The rows of grad_merge have been sorted inside MergeAdd functor
        scatter::MergeAdd<DeviceContext, T> merge_func;
486
        merge_func(ctx.template device_context<DeviceContext>(), *grad,
S
sneaxiy 已提交
487 488
                   &tmp_grad_merge, true);
        grad_merge_ptr = &tmp_grad_merge;
S
sneaxiy 已提交
489 490 491
      }

      auto& grad_merge = *grad_merge_ptr;
T
wip  
typhoonzero 已提交
492
      auto& grad_tensor = grad_merge.value();
T
wip  
typhoonzero 已提交
493
      const T* grad_data = grad_tensor.template data<T>();
S
sneaxiy 已提交
494
      const int64_t* rows = grad_merge.rows().Data(ctx.GetPlace());
T
wip  
typhoonzero 已提交
495
      auto row_numel = grad_tensor.numel() / grad_merge.rows().size();
T
wip  
typhoonzero 已提交
496

497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
      SparseAdamFunctor<T, CPUAdam> functor(
          beta1, beta2, epsilon, beta1_pow->data<T>(), beta2_pow->data<T>(),
          mom1->data<T>(), mom1_out->mutable_data<T>(ctx.GetPlace()),
          mom2->data<T>(), mom2_out->mutable_data<T>(ctx.GetPlace()),
          lr->data<T>(), grad_data, param->data<T>(),
          param_out->mutable_data<T>(ctx.GetPlace()), rows, row_numel,
          grad_merge.rows().size(), lazy_mode);
      // update beta1 and beta2
      beta1_pow_out->mutable_data<T>(ctx.GetPlace())[0] =
          beta1 * beta1_pow->data<T>()[0];
      beta2_pow_out->mutable_data<T>(ctx.GetPlace())[0] =
          beta2 * beta2_pow->data<T>()[0];
      if (lazy_mode) {
        VLOG(3) << "run cpu lazy mode";
        size_t row_count = grad_merge.rows().size();
        std::vector<int64_t> cpu_rows(grad_merge.rows());
        for (size_t row_index = 0; row_index < row_count; ++row_index) {
          for (size_t offset = 0; offset < row_numel; ++offset) {
            size_t i = cpu_rows[row_index] * row_numel + offset;
            functor.adam_update(i, grad_data[row_index * row_numel + offset]);
517
          }
518
        }
519
      }
520
#ifndef _WIN32
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
      else if (FLAGS_inner_op_parallelism > 1 &&  // NOLINT
               min_row_size_to_use_multithread > 0 &&
               param->dims()[0] > min_row_size_to_use_multithread) {
        VLOG(3) << "use multi thread, inner_op_parallelism="
                << FLAGS_inner_op_parallelism
                << " min_row_size_to_use_multithread="
                << min_row_size_to_use_multithread;
        if (FLAGS_inner_op_parallelism > 10) {
          VLOG(1) << "FLAGS_inner_op_parallelism " << FLAGS_inner_op_parallelism
                  << " is two large!";
        }
        auto& grad_rows = grad_merge.rows();
        std::unordered_map<size_t, int> row_id_to_grad_row_offset;
        size_t param_row_count = param->numel() / row_numel;
        if (param_row_count < 1000) {
          VLOG(1) << "param_row_count should be larger then 1000 to use "
                     "multi thread, currently "
                  << param_row_count;
        }
        for (size_t i = 0; i < grad_rows.size(); ++i) {
          row_id_to_grad_row_offset[grad_rows[i]] = i;
        }
        std::vector<std::future<void>> fs;
        int64_t line_in_each_thread =
            param_row_count / FLAGS_inner_op_parallelism + 1;
        for (int i = 0; i < FLAGS_inner_op_parallelism; ++i) {
          int64_t start = i * line_in_each_thread;
          int64_t end = (i + 1) * line_in_each_thread;
          if (start >= static_cast<int64_t>(param_row_count)) {
            break;
Q
Qiao Longfei 已提交
551
          }
552 553
          if (end > static_cast<int64_t>(param_row_count)) {
            end = static_cast<int64_t>(param_row_count);
Q
Qiao Longfei 已提交
554
          }
555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571
          fs.push_back(framework::Async([&functor, &row_id_to_grad_row_offset,
                                         &grad_data, row_numel, start, end]() {
            for (int64_t row_id = start; row_id < end; ++row_id) {
              auto iter = row_id_to_grad_row_offset.find(row_id);
              if (iter != row_id_to_grad_row_offset.end()) {
                for (size_t row_offset = 0U; row_offset < row_numel;
                     ++row_offset) {
                  functor.adam_update(
                      row_id * row_numel + row_offset,
                      grad_data[iter->second * row_numel + row_offset]);
                }
              } else {
                for (size_t row_offset = 0U; row_offset < row_numel;
                     ++row_offset) {
                  functor.adam_update(row_id * row_numel + row_offset, 0);
                }
              }
Q
Qiao Longfei 已提交
572
            }
573
          }));
574
        }
575 576 577 578 579
        for (size_t i = 0; i < fs.size(); ++i) fs[i].wait();
      }
#endif        // !_WIN32
      else {  // NOLINT
        functor(param->numel());
Q
Qiao Longfei 已提交
580
      }
T
wip  
typhoonzero 已提交
581
    } else {
582 583
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Variable type not supported by adam_op"));
T
wip  
typhoonzero 已提交
584
    }
585 586 587 588 589
  }
};

}  // namespace operators
}  // namespace paddle