communicator.py 4.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from .executor import global_scope
16 17 18 19
"""
Communicator is used for async distribute training in distribute_transpiler mode.
It's a wrapper of a cpp class Communicator and should be used inside fleet API.
"""
20 21
from . import core
from .framework import Program
22
from .transpiler.distribute_transpiler import DistributedMode
23 24 25 26 27

__all__ = ['Communicator']


class Communicator(object):
28
    def __init__(self, program, mode, kwargs=None, envs={}):
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
        """
        Communicator is used for async distribute training in distribute_transpiler mode.
        It's a wrapper of a cpp class Communicator and should be used inside fleet API.

        Args:
            program(Program): the trainers program after transpile of distribute_transpiler.
            It's used by communicator to extract the information to do communication.

        Returns:
            None

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.Program()
                comm = fluid.communicator.Communicator(prog)
                comm.start()
                comm.stop()
        """
        # set all recv op to not_run mode
        assert isinstance(program, Program)
        for op in program.block(0).ops:
            if op.type == "recv":
                op._set_attr('do_not_run', True)
55 56 57 58 59 60 61 62 63

        if mode == DistributedMode.GEO:
            push_vars = kwargs["push_vars"]
            push_var_names = []

            for k, vs in push_vars.items():
                varnames = "&".join(vs["var_names"])
                sections = "&".join([str(v) for v in vs["sections"]])
                endpoints = "&".join(vs["epmap"])
64 65
                # record parameter sparse or dense
                is_sparse = "1" if vs["is_sparse"] == ['True'] else "0"
66 67 68 69 70 71 72 73

                push_var_names.append(k)
                envs[k] = "#".join([varnames, sections, endpoints, is_sparse])

            envs["geo_trainer_nums"] = str(kwargs["trainers"])
            envs["geo_need_push_nums"] = str(kwargs["push_nums"])
            envs["geo_send_varnames"] = '#'.join(push_var_names)

74 75 76 77
        if mode == DistributedMode.SYNC:
            envs["pserver_endpoints"] = ','.join(kwargs["pserver_endpoints"])
            envs["trainer_id"] = str(kwargs["trainer_id"])

78 79 80 81 82 83 84 85 86 87 88 89 90
        mode_str = None

        if mode == DistributedMode.SYNC:
            mode_str = "SYNC"
        elif mode == DistributedMode.ASYNC:
            mode_str = "ASYNC"
        elif mode == DistributedMode.HALF_ASYNC:
            mode_str = "HALF_ASYNC"
        elif mode == DistributedMode.GEO:
            mode_str = "GEO"

        self.communicator_ = core.DistCommunicator(mode_str, program.desc,
                                                   global_scope(), envs)
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128

    def start(self):
        """
        Start communicator. Should call before training process.

        Returns:
            None

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.Program()
                comm = fluid.communicator.Communicator(prog)
                comm.start()
                comm.stop()
        """
        self.communicator_.start()

    def stop(self):
        """
        Stop communicator. Should call after training process.

        Returns:
            None

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.Program()
                comm = fluid.communicator.Communicator(prog)
                comm.start()
                comm.stop()
        """
        self.communicator_.stop()
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146

    def is_running(self):
        """
        Get communicator is running or stop.

        Returns:
            bool

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.Program()
                comm = fluid.communicator.Communicator(prog)
                comm.is_running()
        """
        self.communicator_.is_running()