cos_sim_op.h 7.1 KB
Newer Older
X
Xinghai Sun 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#pragma once
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
C
chengduoZH 已提交
18
#include "paddle/operators/elementwise_add_op.h"
X
Xinghai Sun 已提交
19 20 21 22 23 24 25 26

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;
Q
qijun 已提交
27 28 29
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;
X
Xinghai Sun 已提交
30

C
chengduoZH 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
template <typename T, typename DeviceContext>
void Function_forward(T* out, T* x_norm, T* y_norm,
                      ElementIterator<T, DeviceContext>& x,
                      ElementIterator<T, DeviceContext>& y, int row, int col) {
  for (int i = 0; i < row; ++i) {
    T xx = 0;
    T yy = 0;
    T xy = 0;
    for (int j = 0; j < col; ++j) {
      xy += (*x) * (*y);
      xx += (*x) * (*x);
      yy += (*y) * (*y);
      ++y;
      ++x;
    }
    x_norm[i] = sqrt(xx);
    y_norm[i] = sqrt(yy);

    out[i] = xy / (x_norm[i] * y_norm[i]);
  }
}

Q
QI JUN 已提交
53
template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
54
class CosSimKernel : public framework::OpKernel<T> {
X
Xinghai Sun 已提交
55 56
 public:
  void Compute(const framework::ExecutionContext& context) const override {
57 58 59 60 61 62 63 64 65
    // get Tensor
    auto* in_x = context.Input<Tensor>("X");
    auto* in_y = context.Input<Tensor>("Y");
    auto* out_z = context.Output<Tensor>("Out");
    auto* out_x_norm = context.Output<Tensor>("XNorm");
    auto* out_y_norm = context.Output<Tensor>("YNorm");
    out_z->mutable_data<T>(context.GetPlace());
    out_x_norm->mutable_data<T>(context.GetPlace());
    out_y_norm->mutable_data<T>(context.GetPlace());
X
Xinghai Sun 已提交
66

67 68
    int rows_x = in_x->dims()[0];
    int rows_y = in_y->dims()[0];
C
chengduoZH 已提交
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101

    int cols = framework::product(in_x->dims()) / rows_x;
    auto x_iter = ElementIterator<T, DeviceContext>(in_x->data<T>(), rows_x,
                                                    cols, rows_x, cols);
    auto y_iter = ElementIterator<T, DeviceContext>(in_y->data<T>(), rows_y,
                                                    cols, rows_x, cols);

    Function_forward(out_z->data<T>(), out_x_norm->data<T>(),
                     out_y_norm->data<T>(), x_iter, y_iter, rows_x, cols);
    //
    //    // convert Tensor to Eigen Tensor
    ////    int rows_x = in_x->dims()[0];
    ////    int rows_y = in_y->dims()[0];
    //    auto x = EigenMatrix<T>::Reshape(*in_x, 1);
    //    auto y = EigenMatrix<T>::Reshape(*in_y, 1);
    //    auto z = EigenVector<T>::Flatten(*out_z);
    //    auto x_norm = EigenVector<T>::Flatten(*out_x_norm);
    //    auto y_norm = EigenVector<T>::Flatten(*out_y_norm);
    //
    //    // compute
    //    auto& place =
    //        *context.template device_context<DeviceContext>().eigen_device();
    //    auto row_along = Eigen::array<int, 1>({{1}});
    //    x_norm.device(place) = x.square().sum(row_along).sqrt();
    //    y_norm.device(place) = y.square().sum(row_along).sqrt();
    //    if (rows_x == rows_y) {
    //      auto xy = (x * y).sum(Eigen::array<int, 1>({{1}}));
    //      z.device(place) = xy / x_norm / y_norm;
    //    } else {
    //      Eigen::DSizes<int, 2> bcast(rows_x, 1);
    //      auto xy = (x * y.broadcast(bcast)).sum(row_along);
    //      z.device(place) = xy / x_norm / y_norm.broadcast(bcast);
    //    }
X
Xinghai Sun 已提交
102 103 104
  }
};

C
chengduoZH 已提交
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
template <typename T, typename DeviceContext>
void Function_element(T* result, ElementIterator<T, DeviceContext> dz,
                      ElementIterator<T, DeviceContext> y,
                      ElementIterator<T, DeviceContext> x_norm,
                      ElementIterator<T, DeviceContext> y_norm,
                      ElementIterator<T, DeviceContext> z,
                      ElementIterator<T, DeviceContext> x, int num, int block) {
  for (int i = 0; i < num; ++i) {
    result[i % block] += (*dz) * ((*y) / ((*x_norm) * (*y_norm)) -
                                  (*z) * (*x) / ((*x_norm) * (*x_norm)));
    ++dz;
    ++y;
    ++x_norm;
    ++y_norm;
    ++z;
    ++x;
  }
}

Q
QI JUN 已提交
124
template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
125
class CosSimGradKernel : public framework::OpKernel<T> {
X
Xinghai Sun 已提交
126 127
 public:
  void Compute(const framework::ExecutionContext& context) const override {
128 129 130 131 132 133 134 135 136
    // get Tensor
    auto* in_x = context.Input<Tensor>("X");
    auto* in_y = context.Input<Tensor>("Y");
    auto* in_z = context.Input<Tensor>("Out");
    auto* in_x_norm = context.Input<Tensor>("XNorm");
    auto* in_y_norm = context.Input<Tensor>("YNorm");
    auto* out_grad_x = context.Output<Tensor>(framework::GradVarName("X"));
    auto* out_grad_y = context.Output<Tensor>(framework::GradVarName("Y"));
    auto* in_grad_z = context.Input<Tensor>(framework::GradVarName("Out"));
X
Xinghai Sun 已提交
137

138
    // compute gradident
139 140 141
    int rows_x = in_x->dims()[0];
    int rows_y = in_y->dims()[0];
    int cols = framework::product(in_x->dims()) / rows_x;
C
chengduoZH 已提交
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181

    //////////////////////////////
    // ##
    auto x_iter = ElementIterator<T, DeviceContext>(in_x->data<T>(), rows_x,
                                                    cols, rows_x, cols);
    auto y_iter = ElementIterator<T, DeviceContext>(in_y->data<T>(), rows_y,
                                                    cols, rows_x, cols);
    auto z_iter = ElementIterator<T, DeviceContext>(in_z->data<T>(), rows_x, 1,
                                                    rows_x, cols);
    auto dz_iter = ElementIterator<T, DeviceContext>(in_grad_z->data<T>(),
                                                     rows_x, 1, rows_x, cols);
    auto x_norm_iter = ElementIterator<T, DeviceContext>(
        in_x_norm->data<T>(), rows_x, 1, rows_x, cols);
    auto y_norm_iter = ElementIterator<T, DeviceContext>(
        in_y_norm->data<T>(), rows_y, 1, rows_x, cols);
    // ##
    //////////////////////////////
    // compute dx
    if (out_grad_x) {
      out_grad_x->mutable_data<T>(context.GetPlace());

      //////////////////////////////
      // ##
      Function_element(out_grad_x->data<T>(), dz_iter, y_iter, x_norm_iter,
                       y_norm_iter, z_iter, x_iter, rows_x * cols,
                       rows_x * cols);
      // ##
      //////////////////////////////
    }
    // compute dy
    if (out_grad_y) {
      out_grad_y->mutable_data<T>(context.GetPlace());

      //////////////////////////////
      // ##
      Function_element(out_grad_y->data<T>(), dz_iter, x_iter, y_norm_iter,
                       x_norm_iter, z_iter, y_iter, rows_x * cols,
                       rows_y * cols);
      // ##
      //////////////////////////////
182
    }
X
Xinghai Sun 已提交
183 184 185 186 187
  }
};

}  // namespace operators
}  // namespace paddle