communicator_test.cc 3.6 KB
Newer Older
Q
Qiao Longfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
//   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <glog/logging.h>
#include <gtest/gtest.h>
#include <algorithm>
#include <memory>
#include <vector>

#include "paddle/fluid/operators/distributed/communicator.h"

namespace paddle {
namespace operators {
namespace distributed {

using LoDTensor = framework::LoDTensor;
using SelectedRows = framework::SelectedRows;

TEST(communicator, merge_lod_tensors) {
  auto cpu_place = platform::CPUPlace();
  auto dims = framework::make_ddim({2, 3});
  std::vector<std::shared_ptr<framework::Variable>> in_vars;
  float out_value = 0;
  for (auto i = 0; i < 10; ++i) {
    auto var = std::make_shared<Variable>();
    in_vars.emplace_back(var);
    auto *tensor = var->GetMutable<LoDTensor>();
    auto *data = tensor->mutable_data<float>(dims, cpu_place);
    for (auto j = 0; j < tensor->numel(); ++j) {
      data[j] = static_cast<float>(i);
    }
    out_value += static_cast<float>(i);
  }
  const std::string out_name = "Out";
  std::unique_ptr<framework::Scope> scope;
  scope.reset(new framework::Scope());
  scope->Var(out_name);
  for (auto i = 0; i < 10; ++i) {
1
123malin 已提交
50
    MergeVars<float>(out_name, in_vars, scope.get());
Q
Qiao Longfei 已提交
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
  }
  auto &out_tensor = scope->FindVar(out_name)->Get<LoDTensor>();
  auto *out_data = out_tensor.data<float>();
  ASSERT_EQ(out_tensor.dims(), dims);
  for (auto i = 0; i < out_tensor.numel(); ++i) {
    ASSERT_EQ(out_data[i], out_value);
  }
}

TEST(communicator, merge_selected_rows) {
  auto cpu_place = platform::CPUPlace();
  int64_t width = 10;
  std::vector<std::shared_ptr<framework::Variable>> in_vars;
  const int64_t height = 100;
  for (auto i = 0; i < 10; ++i) {
    std::vector<int64_t> rows;
    for (auto k = 0; k <= i; ++k) {
      rows.push_back(k);
    }
    auto var = std::make_shared<Variable>();
    in_vars.emplace_back(var);
    auto *slr = var->GetMutable<SelectedRows>();
    slr->set_height(height);
    slr->set_rows(rows);
    auto dims =
        framework::make_ddim({static_cast<int64_t>(rows.size()), width});
    auto *data = slr->mutable_value()->mutable_data<float>(dims, cpu_place);
    for (auto i = 0; i < rows.size(); ++i) {
      for (auto j = 0; j < width; ++j) {
        data[i * width + j] = static_cast<float>(rows[i]);
      }
    }
  }
  const std::string out_name = "Out";
  std::unique_ptr<framework::Scope> scope;
  scope.reset(new framework::Scope());
  scope->Var(out_name);
  for (auto i = 0; i < 10; ++i) {
1
123malin 已提交
89
    MergeVars<float>(out_name, in_vars, scope.get());
Q
Qiao Longfei 已提交
90 91 92 93 94 95 96 97
  }
  auto &out_slr = scope->FindVar(out_name)->Get<SelectedRows>();
  auto &out_t = out_slr.value();
  auto *out_data = out_t.data<float>();
  ASSERT_EQ(out_t.dims(), framework::make_ddim({10, width}));
  std::vector<float> out_values;
  out_values.reserve(10);
  for (auto i = 0; i < 10; ++i) {
98
    out_values.push_back(static_cast<float>(i * (10 - i)));
Q
Qiao Longfei 已提交
99 100 101 102 103 104 105 106 107 108 109 110
  }
  for (auto i = 0; i < out_slr.rows().size(); ++i) {
    ASSERT_EQ(out_slr.rows()[i], i);
    for (auto j = 0; j < width; ++j) {
      ASSERT_EQ(out_data[i * width + j], out_values[i]);
    }
  }
}

}  // namespace distributed
}  // namespace operators
}  // namespace paddle