test_py_func_op.py 6.9 KB
Newer Older
S
sneaxiy 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

S
sneaxiy 已提交
15
import os
S
sneaxiy 已提交
16
import paddle.fluid as fluid
17
from paddle.fluid import compiler
S
sneaxiy 已提交
18 19 20 21 22
import paddle
import unittest
import six
import numpy as np

S
sneaxiy 已提交
23 24 25 26 27
dev_cnt = 2
if fluid.core.is_compiled_with_cuda():
    dev_cnt = fluid.core.get_cuda_device_count()
os.environ['CPU_NUM'] = str(dev_cnt)

S
sneaxiy 已提交
28

S
sneaxiy 已提交
29
def dummy_func_with_no_input():
S
sneaxiy 已提交
30
    return np.array([0], dtype='float32')
S
sneaxiy 已提交
31 32 33 34 35 36


def dummy_func_with_no_output(x):
    pass


37 38 39 40
def dummy_func_with_multi_input_output(x, y):
    return np.array(x), np.array(y)


S
sneaxiy 已提交
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
def tanh(x):
    return np.tanh(x)


def tanh_grad(y, dy):
    return np.array(dy) * (1 - np.square(np.array(y)))


def cross_entropy(logits, labels):
    logits = np.array(logits)
    labels = np.array(labels)
    M = logits.shape[0]
    N = logits.shape[1]
    ret = np.ndarray([M, 1]).astype(logits.dtype)
    for idx in six.moves.range(M):
        ret[idx][0] = -np.log(logits[idx][labels[idx][0]])
    return ret


def cross_entropy_grad(logits, labels, bwd_dout):
    logits = np.array(logits)
    labels = np.array(labels)
    bwd_dout = np.array(bwd_dout)
    M = logits.shape[0]
    N = logits.shape[1]
    dlogits = np.zeros([M, N]).astype(logits.dtype)
    for idx in six.moves.range(M):
        dlogits[idx][labels[idx][0]] = -bwd_dout[idx] / logits[idx][labels[idx][
            0]]
    return dlogits, None


def simple_fc_net(img, label, use_py_func_op):
    hidden = img
    for idx in range(4):
        hidden = fluid.layers.fc(
            hidden,
            size=200,
            bias_attr=fluid.ParamAttr(
                initializer=fluid.initializer.Constant(value=1.0)))
S
sneaxiy 已提交
81
        if not use_py_func_op:
S
sneaxiy 已提交
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
            hidden = fluid.layers.tanh(hidden)
        else:
            new_hidden = fluid.default_main_program().current_block(
            ).create_var(
                name='hidden_{}'.format(idx),
                dtype='float32',
                shape=hidden.shape)
            hidden = fluid.layers.py_func(
                func=tanh,
                x=hidden,
                out=new_hidden,
                backward_func=tanh_grad,
                skip_vars_in_backward_input=hidden)

    prediction = fluid.layers.fc(hidden, size=10, act='softmax')
    if not use_py_func_op:
        loss = fluid.layers.cross_entropy(input=prediction, label=label)
    else:
        loss = fluid.default_main_program().current_block().create_var(
            name='loss', dtype='float32', shape=[-1, 1])
S
sneaxiy 已提交
102
        loss = fluid.layers.py_func(
S
sneaxiy 已提交
103 104 105 106 107
            func=cross_entropy,
            x=[prediction, label],
            out=loss,
            backward_func=cross_entropy_grad,
            skip_vars_in_backward_input=loss)
S
sneaxiy 已提交
108

S
sneaxiy 已提交
109 110 111 112
        dummy_var = fluid.default_main_program().current_block().create_var(
            name='test_tmp_var', dtype='float32', shape=[1])
        fluid.layers.py_func(
            func=dummy_func_with_no_input, x=None, out=dummy_var)
S
sneaxiy 已提交
113
        loss += dummy_var
S
sneaxiy 已提交
114 115
        fluid.layers.py_func(func=dummy_func_with_no_output, x=loss, out=None)

116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
        loss_out = fluid.default_main_program().current_block().create_var(
            dtype='float32', shape=[-1, 1])
        dummy_var_out = fluid.default_main_program().current_block().create_var(
            dtype='float32', shape=[1])
        fluid.layers.py_func(
            func=dummy_func_with_multi_input_output,
            x=(loss, dummy_var),
            out=(loss_out, dummy_var_out))
        assert loss == loss_out and dummy_var == dummy_var_out, \
            "py_func failed with multi input and output"

        fluid.layers.py_func(
            func=dummy_func_with_multi_input_output,
            x=[loss, dummy_var],
            out=[loss_out, dummy_var_out])
        assert loss == loss_out and dummy_var == dummy_var_out, \
            "py_func failed with multi input and output"

S
sneaxiy 已提交
134 135 136 137 138
    loss = fluid.layers.mean(loss)
    return loss


def reader():
S
sneaxiy 已提交
139
    for _ in six.moves.range(dev_cnt * 100):
S
sneaxiy 已提交
140 141 142 143
        yield np.random.random([784]), np.random.random_integers(
            size=[1], low=0, high=9)


S
sneaxiy 已提交
144
def test_main(use_cuda, use_py_func_op, use_parallel_executor):
S
sneaxiy 已提交
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
    if use_cuda and not fluid.core.is_compiled_with_cuda():
        return None

    with fluid.program_guard(fluid.Program(), fluid.Program()):
        with fluid.scope_guard(fluid.core.Scope()):
            fluid.default_main_program().random_seed = 1
            fluid.default_startup_program().random_seed = 1
            np.random.seed(1)

            img = fluid.layers.data(name='image', shape=[784], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            loss = simple_fc_net(img, label, use_py_func_op)
            optimizer = fluid.optimizer.SGD(learning_rate=1e-3)
            optimizer.minimize(loss)

            place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
            feeder = fluid.DataFeeder(feed_list=[img, label], place=place)
            r = paddle.batch(reader, batch_size=10)

            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
166

C
chengduo 已提交
167 168
            train_cp = fluid.default_main_program()

S
sneaxiy 已提交
169
            if use_parallel_executor:
C
chengduo 已提交
170 171
                train_cp = compiler.CompiledProgram(fluid.default_main_program(
                ))
172
                train_cp = train_cp.with_data_parallel(loss_name=loss.name)
S
sneaxiy 已提交
173 174 175 176
                fetch_list = [loss.name]
            else:
                fetch_list = [loss]

S
sneaxiy 已提交
177 178 179
            ret = []
            for epoch_id in six.moves.range(2):
                for d in r():
180 181 182
                    L, = exe.run(train_cp,
                                 feed=feeder.feed(d),
                                 fetch_list=fetch_list)
S
sneaxiy 已提交
183
                    ret.append(L)
S
sneaxiy 已提交
184 185 186
            return np.array(ret)


S
sneaxiy 已提交
187 188 189 190
class TestPyFuncOpUseExecutor(unittest.TestCase):
    def setUp(self):
        self.use_parallel_executor = False

S
sneaxiy 已提交
191 192 193 194
    def test_loss_diff(self):
        losses = []
        for use_cuda in [True, False]:
            for use_py_func_op in [True, False]:
S
sneaxiy 已提交
195 196
                L = test_main(use_cuda, use_py_func_op,
                              self.use_parallel_executor)
S
sneaxiy 已提交
197 198 199 200 201 202 203 204
                if L is not None:
                    losses.append(L)

        for idx in six.moves.range(len(losses) - 1):
            max_diff = np.max(np.abs(losses[idx] - losses[0]))
            self.assertAlmostEqual(max_diff, 0, delta=1e-3)


S
sneaxiy 已提交
205
class TestPyFuncOpUseParallelExecutor(TestPyFuncOpUseExecutor):
S
sneaxiy 已提交
206 207 208 209
    def setUp(self):
        self.use_parallel_executor = True


S
sneaxiy 已提交
210 211
if __name__ == '__main__':
    unittest.main()