resnet.py 8.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import functools
import numpy as np
import time
Y
yi.wu 已提交
22
import os
23 24 25 26 27 28 29

import cProfile, pstats, StringIO

import paddle
import paddle.fluid as fluid
import paddle.fluid.core as core
import paddle.fluid.profiler as profiler
W
Wu Yi 已提交
30 31
# from recordio_converter import imagenet_train, imagenet_test
from imagenet_reader import train, val
32 33


W
Wu Yi 已提交
34 35 36 37 38 39 40
def conv_bn_layer(input,
                  ch_out,
                  filter_size,
                  stride,
                  padding,
                  act='relu',
                  is_train=True):
41 42 43 44 45 46 47 48
    conv1 = fluid.layers.conv2d(
        input=input,
        filter_size=filter_size,
        num_filters=ch_out,
        stride=stride,
        padding=padding,
        act=None,
        bias_attr=False)
W
Wu Yi 已提交
49
    return fluid.layers.batch_norm(input=conv1, act=act, is_test=not is_train)
50 51


W
Wu Yi 已提交
52
def shortcut(input, ch_out, stride, is_train=True):
53 54
    ch_in = input.shape[1]  # if args.data_format == 'NCHW' else input.shape[-1]
    if ch_in != ch_out:
W
Wu Yi 已提交
55 56
        return conv_bn_layer(
            input, ch_out, 1, stride, 0, None, is_train=is_train)
57 58 59 60
    else:
        return input


W
Wu Yi 已提交
61 62 63 64
def basicblock(input, ch_out, stride, is_train=True):
    short = shortcut(input, ch_out, stride, is_train=is_train)
    conv1 = conv_bn_layer(input, ch_out, 3, stride, 1, is_train=is_train)
    conv2 = conv_bn_layer(conv1, ch_out, 3, 1, 1, act=None, is_train=is_train)
65 66 67
    return fluid.layers.elementwise_add(x=short, y=conv2, act='relu')


W
Wu Yi 已提交
68 69 70 71 72 73
def bottleneck(input, ch_out, stride, is_train=True):
    short = shortcut(input, ch_out * 4, stride, is_train=is_train)
    conv1 = conv_bn_layer(input, ch_out, 1, stride, 0, is_train=is_train)
    conv2 = conv_bn_layer(conv1, ch_out, 3, 1, 1, is_train=is_train)
    conv3 = conv_bn_layer(
        conv2, ch_out * 4, 1, 1, 0, act=None, is_train=is_train)
74 75 76 77 78 79 80 81 82 83
    return fluid.layers.elementwise_add(x=short, y=conv3, act='relu')


def layer_warp(block_func, input, ch_out, count, stride):
    res_out = block_func(input, ch_out, stride)
    for i in range(1, count):
        res_out = block_func(res_out, ch_out, 1)
    return res_out


W
Wu Yi 已提交
84 85 86 87 88
def resnet_imagenet(input,
                    class_dim,
                    depth=50,
                    data_format='NCHW',
                    is_train=True):
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130

    cfg = {
        18: ([2, 2, 2, 1], basicblock),
        34: ([3, 4, 6, 3], basicblock),
        50: ([3, 4, 6, 3], bottleneck),
        101: ([3, 4, 23, 3], bottleneck),
        152: ([3, 8, 36, 3], bottleneck)
    }
    stages, block_func = cfg[depth]
    conv1 = conv_bn_layer(input, ch_out=64, filter_size=7, stride=2, padding=3)
    pool1 = fluid.layers.pool2d(
        input=conv1, pool_type='avg', pool_size=3, pool_stride=2)
    res1 = layer_warp(block_func, pool1, 64, stages[0], 1)
    res2 = layer_warp(block_func, res1, 128, stages[1], 2)
    res3 = layer_warp(block_func, res2, 256, stages[2], 2)
    res4 = layer_warp(block_func, res3, 512, stages[3], 2)
    pool2 = fluid.layers.pool2d(
        input=res4,
        pool_size=7,
        pool_type='avg',
        pool_stride=1,
        global_pooling=True)
    out = fluid.layers.fc(input=pool2, size=class_dim, act='softmax')
    return out


def resnet_cifar10(input, class_dim, depth=32, data_format='NCHW'):
    assert (depth - 2) % 6 == 0

    n = (depth - 2) // 6

    conv1 = conv_bn_layer(
        input=input, ch_out=16, filter_size=3, stride=1, padding=1)
    res1 = layer_warp(basicblock, conv1, 16, n, 1)
    res2 = layer_warp(basicblock, res1, 32, n, 2)
    res3 = layer_warp(basicblock, res2, 64, n, 2)
    pool = fluid.layers.pool2d(
        input=res3, pool_size=8, pool_type='avg', pool_stride=1)
    out = fluid.layers.fc(input=pool, size=class_dim, act='softmax')
    return out


W
Wu Yi 已提交
131
def _model_reader_dshape_classdim(args, is_train):
132
    model = resnet_cifar10
W
Wu Yi 已提交
133
    reader = None
134 135 136 137 138 139 140
    if args.data_set == "cifar10":
        class_dim = 10
        if args.data_format == 'NCHW':
            dshape = [3, 32, 32]
        else:
            dshape = [32, 32, 3]
        model = resnet_cifar10
W
Wu Yi 已提交
141 142 143 144
        if is_train:
            reader = paddle.dataset.cifar.train10()
        else:
            reader = paddle.dataset.cifar.test10()
145
    elif args.data_set == "flowers":
146 147 148 149 150 151
        class_dim = 102
        if args.data_format == 'NCHW':
            dshape = [3, 224, 224]
        else:
            dshape = [224, 224, 3]
        model = resnet_imagenet
W
Wu Yi 已提交
152 153 154 155
        if is_train:
            reader = paddle.dataset.flowers.train()
        else:
            reader = paddle.dataset.flowers.test()
156 157 158 159 160 161 162
    elif args.data_set == "imagenet":
        class_dim = 1000
        if args.data_format == 'NCHW':
            dshape = [3, 224, 224]
        else:
            dshape = [224, 224, 3]
        model = resnet_imagenet
Y
update  
yi.wu 已提交
163
        if not args.data_path:
164
            raise Exception(
Y
update  
yi.wu 已提交
165
                "Must specify --data_path when training with imagenet")
W
Wu Yi 已提交
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
        if not args.use_reader_op:
            if is_train:
                reader = train()
            else:
                reader = val()
        else:
            if is_train:
                reader = train(xmap=False)
            else:
                reader = val(xmap=False)
    return model, reader, dshape, class_dim


def get_model(args, is_train, main_prog, startup_prog):
    model, reader, dshape, class_dim = _model_reader_dshape_classdim(args,
                                                                     is_train)

    pyreader = None
    trainer_count = int(os.getenv("PADDLE_TRAINERS"))
    with fluid.program_guard(main_prog, startup_prog):
        with fluid.unique_name.guard():
            if args.use_reader_op:
                pyreader = fluid.layers.py_reader(
                    capacity=args.batch_size * args.gpus,
                    shapes=([-1] + dshape, (-1, 1)),
                    dtypes=('float32', 'int64'),
                    name="train_reader" if is_train else "test_reader",
                    use_double_buffer=True)
                input, label = fluid.layers.read_file(pyreader)
            else:
                input = fluid.layers.data(
                    name='data', shape=dshape, dtype='float32')
                label = fluid.layers.data(
                    name='label', shape=[1], dtype='int64')

            predict = model(input, class_dim, is_train=is_train)
202 203 204
            cost = fluid.layers.cross_entropy(input=predict, label=label)
            avg_cost = fluid.layers.mean(x=cost)

W
Wu Yi 已提交
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
            batch_acc1 = fluid.layers.accuracy(input=predict, label=label, k=1)
            batch_acc5 = fluid.layers.accuracy(input=predict, label=label, k=5)

            # configure optimize
            optimizer = None
            if is_train:
                if args.use_lars:
                    lars_decay = 1.0
                else:
                    lars_decay = 0.0

                total_images = 1281167 / trainer_count

                step = int(total_images / args.batch_size + 1)
                epochs = [30, 60, 80, 90]
                bd = [step * e for e in epochs]
                base_lr = args.learning_rate
                lr = []
                lr = [base_lr * (0.1**i) for i in range(len(bd) + 1)]
                optimizer = fluid.optimizer.Momentum(
                    learning_rate=base_lr,
                    #learning_rate=fluid.layers.piecewise_decay(
                    #    boundaries=bd, values=lr),
                    momentum=0.9,
                    regularization=fluid.regularizer.L2Decay(1e-4))
                optimizer.minimize(avg_cost)

                if args.memory_optimize:
                    fluid.memory_optimize(main_prog)

    # config readers
    if not args.use_reader_op:
        batched_reader = paddle.batch(
            reader if args.no_random else paddle.reader.shuffle(
                reader, buf_size=5120),
            batch_size=args.batch_size * args.gpus,
            drop_last=True)
242
    else:
W
Wu Yi 已提交
243 244 245 246 247 248 249 250 251
        batched_reader = None
        pyreader.decorate_paddle_reader(
            paddle.batch(
                reader if args.no_random else paddle.reader.shuffle(
                    reader, buf_size=5120),
                batch_size=args.batch_size))

    return avg_cost, optimizer, [batch_acc1,
                                 batch_acc5], batched_reader, pyreader