solve_op.h 25.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
#include "Eigen/Core"
#include "Eigen/LU"
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/tensor_util.h"
#include "paddle/fluid/operators/eigen/eigen_function.h"
#include "paddle/fluid/operators/math/blas.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/operators/math/matrix_solve.h"
#include "paddle/fluid/operators/reduce_ops/reduce_sum_op.h"
#include "paddle/fluid/operators/squeeze_op.h"
#if defined(__NVCC__) || defined(__HIPCC__)
#include "paddle/fluid/operators/reduce_ops/cub_reduce.h"
#endif

#define MAX_RANK_SUPPORTED 6

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using framework::To32BitIndex;

constexpr int kMULMKLDNNINT8 = 1;

struct IdentityFunctor {
  HOSTDEVICE explicit inline IdentityFunctor() {}

  template <typename U>
  HOSTDEVICE inline U operator()(const U& x) const {
    return x;
  }
};

template <typename DeviceContext, typename T>
void ReduceSumForSolveGrad(const Tensor* input, Tensor* output,
                           const std::vector<int>& reduce_dims, bool keep_dim,
                           const paddle::framework::ExecutionContext& ctx) {
#if defined(__NVCC__) || defined(__HIPCC__)
  auto stream = ctx.cuda_device_context().stream();
  TensorReduce<T, T, cub::Sum, IdentityFunctor>(*input, output, reduce_dims,
                                                static_cast<T>(0), cub::Sum(),
                                                IdentityFunctor(), stream);
#else
  ReduceKernelFunctor<DeviceContext, T, ops::SumFunctor>(
      input, output, reduce_dims, keep_dim, false, ctx)
      .template apply<T>();
#endif
}

// check the input other is vector_case or not
static inline bool is_vector_rhs(const Tensor& input, const Tensor& other) {
  auto x_dim = input.dims();
  auto y_dim = other.dims();
  auto x_dim_size = x_dim.size();
  auto y_dim_size = y_dim.size();
  std::vector<int64_t> x_dims_vec = paddle::framework::vectorize(x_dim);
  std::vector<int64_t> y_dims_vec = paddle::framework::vectorize(y_dim);

  std::vector<int64_t>::const_iterator f = x_dims_vec.begin();
  std::vector<int64_t>::const_iterator l = x_dims_vec.end() - 1;
  std::vector<int64_t> x_dims_vec_cut(f, l);  // input.shape[:-1]

  std::vector<int64_t> expected_batched_rhs_shape(x_dims_vec_cut);
  bool vector_case =
      y_dim_size == 1 || (x_dim_size - 1 == y_dim_size &&
                          y_dims_vec == (expected_batched_rhs_shape));

  return vector_case;
}

// unsqueeze operation helper
static framework::DDim GetOutputShapeUnsqueeze(
    const std::vector<int> unsqz_dims, const framework::DDim& in_dims) {
  int output_size = in_dims.size() + static_cast<int>(unsqz_dims.size());
  int cur_output_size = in_dims.size();
  std::vector<int64_t> output_shape(output_size, 0);

  // Validity Check: rank range.
  PADDLE_ENFORCE_LE(output_size, 6,
                    platform::errors::InvalidArgument(
                        "The output "
                        "tensor's rank should be less than 6."));

  for (int axis : unsqz_dims) {
    int cur = axis < 0 ? axis + cur_output_size + 1 : axis;
    // Vaildity Check: the axis bound
    PADDLE_ENFORCE_GE(cur, 0, platform::errors::InvalidArgument(
                                  "The insert dimension value should "
                                  "not be less than 0"));
    PADDLE_ENFORCE_LE(cur, cur_output_size,
                      platform::errors::InvalidArgument(
                          "The insert dimension value shoule not be larger "
                          "than the dimension size of input tensor"));
    // Move old axis, and insert new axis
    for (int i = cur_output_size; i >= cur; --i) {
      if (output_shape[i] == 1) {
        // Move axis
        output_shape[i + 1] = 1;
        output_shape[i] = 0;
      }
    }
    output_shape[cur] = 1;
    // Add the output size.
    cur_output_size++;
  }

  // Make output shape
  for (int in_idx = 0, out_idx = 0; out_idx < output_size; ++out_idx) {
    if (output_shape[out_idx] == 0) {
      output_shape[out_idx] = in_dims[in_idx++];
    }
  }

  return framework::make_ddim(output_shape);
}

// operation like squeeze(-1)
static void to_squeeze(const framework::ExecutionContext& context,
                       const framework::Tensor& in, framework::Tensor* out) {
  auto x_dims = in.dims();
  std::vector<int> sqz_dims = {-1};
  auto out_dims = GetOutputShape(sqz_dims, x_dims, true);
  out->mutable_data(context.GetPlace(), in.type());
  framework::TensorCopy(
      in, context.GetPlace(),
      context.template device_context<platform::DeviceContext>(), out);
  out->Resize(out_dims);
}

// vector_case, need to operate like unsqueeze(-1)
static void to_unsqueeze(const framework::ExecutionContext& context,
                         const framework::Tensor& in, framework::Tensor* out) {
  auto x_dims = in.dims();
  std::vector<int> unsqz_dims = {-1};
  framework::DDim out_dims = out->dims();
  out_dims = GetOutputShapeUnsqueeze(unsqz_dims, x_dims);
  framework::TensorCopy(
      in, context.GetPlace(),
      context.template device_context<platform::DeviceContext>(), out);
  out->Resize(out_dims);
}

template <typename Container>
Container infer_size_impl(std::vector<int64_t> a, std::vector<int64_t> b) {
  size_t dimsA = a.size();
  size_t dimsB = b.size();
  size_t ndim = dimsA > dimsB ? dimsA : dimsB;
  Container expandedSizes(ndim);

  for (ptrdiff_t i = (ptrdiff_t)ndim - 1; i >= 0; --i) {
    ptrdiff_t offset = ndim - 1 - i;
    ptrdiff_t dimA = dimsA - 1 - offset;
    ptrdiff_t dimB = dimsB - 1 - offset;
    int64_t sizeA = (dimA >= 0) ? a[dimA] : 1;
    int64_t sizeB = (dimB >= 0) ? b[dimB] : 1;

    PADDLE_ENFORCE_EQ(
        (sizeA == sizeB || sizeA == 1 || sizeB == 1), true,
        platform::errors::PreconditionNotMet(
            "The size of tensor a (%d) must match the size of tensor b "
            "(%d) at non-singleton dimension %d.",
            sizeA, sizeB, i));

    expandedSizes[i] = sizeA == 1 ? sizeB : sizeA;
  }
  return expandedSizes;
}

// infer size for broadcast operation
static std::vector<int64_t> infer_size(std::vector<int64_t> a,
                                       std::vector<int64_t> b) {
  return infer_size_impl<std::vector<int64_t>>(a, b);
}

// necessary check before expand operation
static void expand_check(const Tensor& arg1,
                         std::vector<int64_t> expand_shape) {
  auto rank = arg1.dims().size();
  PADDLE_ENFORCE_GE(
      rank, 1, platform::errors::InvalidArgument(
                   "The rank of the input 'X' for expand must be positive, "
                   "but the value received is %d.",
                   rank));
  PADDLE_ENFORCE_LE(
      rank, MAX_RANK_SUPPORTED,
      platform::errors::InvalidArgument(
          "The rank of the input 'X' for expand must be less than "
          "or equal to %d, but the value received is %d.",
          MAX_RANK_SUPPORTED, rank));
  auto shape_size = static_cast<int>(expand_shape.size());
  PADDLE_ENFORCE_GE(
      shape_size, rank,
      platform::errors::InvalidArgument(
          "The number (%d) of elements of 'shape' for expand must be "
          "greater than or equal to the rank (%d) of the input 'X'.",
          shape_size, rank));
  PADDLE_ENFORCE_LE(
      shape_size, MAX_RANK_SUPPORTED,
      platform::errors::InvalidArgument(
          "The number (%d) of elements of 'shape' for expand must be "
          "less than or equal to %d.",
          shape_size, MAX_RANK_SUPPORTED));
}

// broadcast the batch dimensions of arg1 and arg2.
static inline std::tuple<std::vector<int64_t>, std::vector<int64_t>>
_broadcast_batch_dims(const Tensor& arg1, const Tensor& arg2) {
  std::vector<int64_t> arg1_dims_vec =
      paddle::framework::vectorize(arg1.dims());
  std::vector<int64_t> arg2_dims_vec =
      paddle::framework::vectorize(arg2.dims());

  std::vector<int64_t>::const_iterator f1 = arg1_dims_vec.begin();
  std::vector<int64_t>::const_iterator l1 = arg1_dims_vec.end() - 2;
  std::vector<int64_t> arg1_dims_vec_cut(f1, l1);

  std::vector<int64_t>::const_iterator f2 = arg2_dims_vec.begin();
  std::vector<int64_t>::const_iterator l2 = arg2_dims_vec.end() - 2;
  std::vector<int64_t> arg2_dims_vec_cut(f2, l2);

  std::vector<int64_t> expand_batch_portion =
      infer_size(arg1_dims_vec_cut, arg2_dims_vec_cut);

  std::vector<int64_t> arg1_expand_size({expand_batch_portion});
  arg1_expand_size.insert(
      arg1_expand_size.end(),
      {arg1_dims_vec[static_cast<int>(arg1_dims_vec.size()) - 2],
       arg1_dims_vec[static_cast<int>(arg1_dims_vec.size()) - 1]});

  std::vector<int64_t> arg2_expand_size({expand_batch_portion});
  arg2_expand_size.insert(
      arg2_expand_size.end(),
      {arg2_dims_vec[static_cast<int>(arg2_dims_vec.size()) - 2],
       arg2_dims_vec[static_cast<int>(arg2_dims_vec.size()) - 1]});

  return std::make_tuple(arg1_expand_size, arg2_expand_size);
}

template <int Rank, typename T, typename DeviceContext>
void tensor_expand(const framework::ExecutionContext& context,
                   const Tensor& arg1, Tensor* out0,
                   std::vector<int64_t> expand_size) {
  auto in_dims = arg1.dims();
  auto expand_shape = expand_size;
  auto vec_in_dims = framework::vectorize<int>(in_dims);
  auto diff = expand_shape.size() - vec_in_dims.size();
  vec_in_dims.insert(vec_in_dims.begin(), diff, 1);
  std::vector<int> repeat_times(vec_in_dims.size());
  for (size_t i = 0; i < vec_in_dims.size(); ++i) {
    PADDLE_ENFORCE_NE(
        expand_shape[i], 0,
        platform::errors::InvalidArgument("The expanded size cannot be zero."));
    if (i < diff) {
      PADDLE_ENFORCE_GT(
          expand_shape[i], 0,
          platform::errors::InvalidArgument(
              "The expanded size (%d) for non-existing dimensions must be "
              "positive for expand operation.",
              expand_shape[i]));
      repeat_times[i] = expand_shape[i];
    } else if (expand_shape[i] > 0) {
      if (vec_in_dims[i] != 1) {
        PADDLE_ENFORCE_EQ(
            vec_in_dims[i], expand_shape[i],
            platform::errors::InvalidArgument(
                "The value (%d) of the non-singleton dimension does not match"
                " the corresponding value (%d) in shape for expand operation.",
                vec_in_dims[i], expand_shape[i]));
        repeat_times[i] = 1;
      } else {
        repeat_times[i] = expand_shape[i];
      }
    } else {
      PADDLE_ENFORCE_EQ(
          expand_shape[i], -1,
          platform::errors::InvalidArgument(
              "When the value in shape is negative for expand_v2 op, "
              "only -1 is supported, but the value received is %d.",
              expand_shape[i]));
      repeat_times[i] = 1;
    }
  }

  Eigen::DSizes<Eigen::DenseIndex, Rank> bcast_dims;
  for (size_t i = 0; i < repeat_times.size(); ++i) {
    bcast_dims[i] = repeat_times[i];
  }

  framework::DDim new_in_dims = framework::make_ddim(vec_in_dims);
  framework::DDim out_dims(new_in_dims);
  for (size_t i = 0; i < repeat_times.size(); ++i) {
    out_dims[i] *= repeat_times[i];
  }

  out0->Resize(out_dims);
  auto x = EigenTensor<T, Rank>::From(arg1, new_in_dims);
  out0->mutable_data<T>(context.GetPlace());
  auto y = EigenTensor<T, Rank>::From(*out0, out_dims);
  auto& place =
      *context.template device_context<DeviceContext>().eigen_device();
  // use 32-bit index to speed up
  bool use_32bit_index = y.size() < Eigen::NumTraits<int>::highest();
  if (use_32bit_index) {
    EigenBroadcast<std::decay_t<decltype(place)>, T, Rank>::Eval(
        place, To32BitIndex(y), To32BitIndex(x), bcast_dims);
  } else {
    EigenBroadcast<std::decay_t<decltype(place)>, T, Rank>::Eval(place, y, x,
                                                                 bcast_dims);
  }
}

template <typename DeviceContext, typename T>
static void linalg_solve(const framework::ExecutionContext& context,
                         const framework::Tensor* x, const framework::Tensor* y,
                         framework::Tensor* out) {
  out->mutable_data<T>(context.GetPlace());

  auto& dev_ctx = context.template device_context<DeviceContext>();
  math::MatrixSolveFunctor<DeviceContext, T> mat_solve;

  // input y can be vector or matrix
  // but need to be unsqueezed if y is a vector
  bool is_vector = false;
  is_vector = is_vector_rhs(*x, *y);

  Tensor tmp_y;
  if (is_vector) {
    tmp_y.mutable_data(context.GetPlace(), y->type());
    to_unsqueeze(context, *y, &tmp_y);
  } else {
    tmp_y.Resize(y->dims());
    tmp_y.mutable_data(context.GetPlace(), y->type());
    framework::TensorCopy(
        *y, context.GetPlace(),
        context.template device_context<platform::DeviceContext>(), &tmp_y);
  }

  Tensor tmp_x;
  tmp_x.Resize(x->dims());
  tmp_x.mutable_data(context.GetPlace(), x->type());
  framework::TensorCopy(
      *x, context.GetPlace(),
      context.template device_context<platform::DeviceContext>(), &tmp_x);

  std::vector<int64_t> x_broadcast_dims;
  std::vector<int64_t> y_broadcast_dims;
  std::tie(x_broadcast_dims, y_broadcast_dims) =
      _broadcast_batch_dims(tmp_x, tmp_y);

  expand_check(tmp_x, x_broadcast_dims);
  expand_check(tmp_y, y_broadcast_dims);

  Tensor tmp_x_bc;
  Tensor tmp_y_bc;
  auto tmp_x_rank = tmp_x.dims().size();
  auto tmp_y_rank = tmp_y.dims().size();

  auto rank_0 = std::max(tmp_x_rank, static_cast<int>(x_broadcast_dims.size()));
  switch (rank_0) {
    case 1:
      tensor_expand<1, T, DeviceContext>(context, tmp_x, &tmp_x_bc,
                                         x_broadcast_dims);
      break;
    case 2:
      tensor_expand<2, T, DeviceContext>(context, tmp_x, &tmp_x_bc,
                                         x_broadcast_dims);
      break;
    case 3:
      tensor_expand<3, T, DeviceContext>(context, tmp_x, &tmp_x_bc,
                                         x_broadcast_dims);
      break;
    case 4:
      tensor_expand<4, T, DeviceContext>(context, tmp_x, &tmp_x_bc,
                                         x_broadcast_dims);
      break;
    case 5:
      tensor_expand<5, T, DeviceContext>(context, tmp_x, &tmp_x_bc,
                                         x_broadcast_dims);
      break;
    case 6:
      tensor_expand<6, T, DeviceContext>(context, tmp_x, &tmp_x_bc,
                                         x_broadcast_dims);
      break;
  }

  auto rank_1 = std::max(tmp_y_rank, static_cast<int>(y_broadcast_dims.size()));
  switch (rank_1) {
    case 1:
      tensor_expand<1, T, DeviceContext>(context, tmp_y, &tmp_y_bc,
                                         y_broadcast_dims);
      break;
    case 2:
      tensor_expand<2, T, DeviceContext>(context, tmp_y, &tmp_y_bc,
                                         y_broadcast_dims);
      break;
    case 3:
      tensor_expand<3, T, DeviceContext>(context, tmp_y, &tmp_y_bc,
                                         y_broadcast_dims);
      break;
    case 4:
      tensor_expand<4, T, DeviceContext>(context, tmp_y, &tmp_y_bc,
                                         y_broadcast_dims);
      break;
    case 5:
      tensor_expand<5, T, DeviceContext>(context, tmp_y, &tmp_y_bc,
                                         y_broadcast_dims);
      break;
    case 6:
      tensor_expand<6, T, DeviceContext>(context, tmp_y, &tmp_y_bc,
                                         y_broadcast_dims);
      break;
  }

  auto x_dim = x->dims();
  auto y_dim = y->dims();
  auto x_dim_size = x_dim.size();
  auto y_dim_size = y_dim.size();

  if (is_vector) {                 // vector case
    out->Resize(tmp_y_bc.dims());  // out.unsqueeze(-1)
    mat_solve(dev_ctx, tmp_x_bc, tmp_y_bc, out);

    Tensor out_tmp;
    out_tmp.Resize(out->dims());
    out_tmp = *out;
    to_squeeze(context, out_tmp, out);  // out.squeeze(-1)
  } else {
    PADDLE_ENFORCE_EQ(
        x_dim[x_dim_size - 1], y_dim[y_dim_size - 2],
        platform::errors::InvalidArgument(
            "Matrix X1 with dimension greater than 2 and any matrix Y1,"
            "the matrix X1's width must be equal with matrix Y1's "
            "height. But received X's shape = [%s], X1's shape = [%s], X1's "
            "width = %s; Y's shape = [%s], Y1's shape = [%s], Y1's height = "
            "%s.",
            x_dim, x_dim, x_dim[x_dim_size - 1], y_dim, y_dim,
            y_dim[y_dim_size - 2]));
    mat_solve(dev_ctx, tmp_x_bc, tmp_y_bc, out);
  }
}

// for TransposeNormal
static std::vector<int> getNewAxis(const int b_rank) {
  std::vector<int> axis_1 = {0};
  std::vector<int> axis_2 = {1, 0};
  std::vector<int> axis_3 = {0, 2, 1};
  std::vector<int> axis_4 = {0, 1, 3, 2};
  std::vector<int> axis_5 = {0, 1, 2, 4, 3};
  std::vector<int> axis_6 = {0, 1, 2, 3, 5, 4};
  std::vector<int> axis_7 = {0, 1, 2, 3, 4, 6, 5};
  std::vector<int> axis_8 = {0, 1, 2, 3, 4, 5, 7, 6};
  std::vector<int> axis_9 = {0, 1, 2, 3, 4, 5, 6, 8, 7};
  switch (b_rank) {
    case 1:
      return axis_1;
      break;
    case 2:
      return axis_2;
      break;
    case 3:
      return axis_3;
      break;
    case 4:
      return axis_4;
      break;
    case 5:
      return axis_5;
      break;
    case 6:
      return axis_6;
      break;
    case 7:
      return axis_7;
      break;
    case 8:
      return axis_8;
      break;
    default:
      return axis_9;
  }
}

// for Resize
static std::vector<int64_t> getNewDimsVec(const DDim& b_dims) {
  std::vector<int64_t> b_dims_vec = paddle::framework::vectorize(b_dims);
  int size = b_dims_vec.size();
  if (size >= 2) {
    // swap the last 2 elements in b_dims_vec
    int64_t temp = b_dims_vec[size - 1];
    b_dims_vec[size - 1] = b_dims_vec[size - 2];
    b_dims_vec[size - 2] = temp;
    return b_dims_vec;
  }
  PADDLE_ENFORCE_NE(
      b_dims_vec.empty(), true,
      platform::errors::PreconditionNotMet(
          "The size of tensor b must not be %d after getting new dims", 0));
  // if b_dims_vec.size() == 1, just retun original vec
  return b_dims_vec;
}

template <typename DeviceContext, typename T>
class SolveKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    const auto* x = context.Input<framework::Tensor>("X");
    const auto* y = context.Input<framework::Tensor>("Y");
    Tensor* out = context.Output<framework::Tensor>("Out");
    linalg_solve<DeviceContext, T>(context, x, y, out);
  }
};

template <typename DeviceContext, typename T>
class SolveGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* input = ctx.Input<framework::Tensor>("X");
    auto* y = ctx.Input<framework::Tensor>("Y");
    auto* dout = ctx.Input<framework::Tensor>(framework::GradVarName("Out"));

    // reuse the linalg.solve forward output
    auto* out = ctx.Input<framework::Tensor>("Out");

    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* dy = ctx.Output<Tensor>(framework::GradVarName("Y"));

    bool is_vector = false;
    is_vector = is_vector_rhs(*input, *y);

    Tensor tmp_y;
    if (is_vector) {
      tmp_y.mutable_data(ctx.GetPlace(), y->type());
      to_unsqueeze(ctx, *y, &tmp_y);
    } else {
      tmp_y.Resize(y->dims());
      tmp_y.mutable_data(ctx.GetPlace(), y->type());
      framework::TensorCopy(
          *y, ctx.GetPlace(),
          ctx.template device_context<platform::DeviceContext>(), &tmp_y);
    }

    Tensor tmp_x;
    tmp_x.Resize(input->dims());
    tmp_x.mutable_data(ctx.GetPlace(), input->type());
    framework::TensorCopy(
        *input, ctx.GetPlace(),
        ctx.template device_context<platform::DeviceContext>(), &tmp_x);

    std::vector<int64_t> x_broadcast_dims;
    std::vector<int64_t> y_broadcast_dims;
    std::tie(x_broadcast_dims, y_broadcast_dims) =
        _broadcast_batch_dims(tmp_x, tmp_y);

    // tmp_dx
    Tensor tmp_dx;
    tmp_dx.Resize(framework::make_ddim(x_broadcast_dims));
    tmp_dx.mutable_data<T>(ctx.GetPlace());

    // tmp_dy
    Tensor tmp_dy;
    tmp_dy.Resize(framework::make_ddim(y_broadcast_dims));
    tmp_dy.mutable_data<T>(ctx.GetPlace());

    Tensor tmp_input(input->type());
    const auto& new_dims_vec = getNewDimsVec(input->dims());
    tmp_input.Resize(framework::make_ddim(new_dims_vec));
    tmp_input.mutable_data<T>(ctx.GetPlace());
    math::TransposeNormal<DeviceContext, T> trans;
    std::vector<int> new_axis = getNewAxis(input->dims().size());
    auto& dev_ctx = ctx.template device_context<DeviceContext>();
    trans(dev_ctx, *input, &tmp_input, new_axis);

    if (dy) {
      dy->mutable_data<T>(ctx.GetPlace());
      // reuse linalg_solve forward logics to get tmp_dy
      linalg_solve<DeviceContext, T>(ctx, &tmp_input, dout, &tmp_dy);
    }

    if (dx) {
      dx->mutable_data<T>(ctx.GetPlace());
      // to get dx
      auto blas = math::GetBlas<DeviceContext, T>(ctx);
      if (input->dims().size() == 2 && y->dims().size() == 2) {
        auto mat_dim_a1 = math::CreateMatrixDescriptor(tmp_dy.dims(), 0, false);
        auto mat_dim_b1 = math::CreateMatrixDescriptor(out->dims(), 0, true);
        blas.MatMul(tmp_dy, mat_dim_a1, *out, mat_dim_b1, T(-1), &tmp_dx, T(0));
      } else if (is_vector_rhs(*input, *y)) {
        Tensor tmp_dy_;
        tmp_dy_.mutable_data(ctx.GetPlace(), y->type());
        to_unsqueeze(ctx, tmp_dy, &tmp_dy_);

        Tensor tmp_out_;
        tmp_out_.mutable_data(ctx.GetPlace(), out->type());
        to_unsqueeze(ctx, *out, &tmp_out_);

        auto mat_dim_a1 =
            math::CreateMatrixDescriptor(tmp_dy_.dims(), 0, false);
        auto mat_dim_b1 =
            math::CreateMatrixDescriptor(tmp_out_.dims(), 0, true);
        blas.MatMul(tmp_dy_, mat_dim_a1, tmp_out_, mat_dim_b1, T(-1), &tmp_dx,
                    T(0));
      } else {
        auto mat_dim_a1 = math::CreateMatrixDescriptor(tmp_dy.dims(), 0, false);
        auto mat_dim_b1 = math::CreateMatrixDescriptor(out->dims(), 0, true);
        blas.MatMul(tmp_dy, mat_dim_a1, *out, mat_dim_b1, T(-1), &tmp_dx, T(0));
      }
    }

    if (y->dims() != tmp_dy.dims()) {
      Tensor dy_help;
      dy_help.Resize(tmp_dy.dims());
      dy_help.mutable_data(ctx.GetPlace(), tmp_dy.type());
      framework::TensorCopy(
          tmp_dy, ctx.GetPlace(),
          ctx.template device_context<platform::DeviceContext>(), &dy_help);

      // get dims
      std::vector<std::int64_t> x_dims = vectorize(input->dims());
      std::vector<std::int64_t> y_dims = vectorize(y->dims());
      std::vector<std::int64_t> dout_dims = vectorize(dout->dims());

      if (is_vector_rhs(*input, *y)) {
        dout_dims.push_back(1);
      }

      int y_ndim = y_dims.size();
      int ndim = dout_dims.size();

      const std::vector<std::int64_t> dy_help_dims = vectorize(dy_help.dims());
      std::vector<std::int64_t> dy_broadcast_dims(ndim);

      std::fill(dy_broadcast_dims.data(),
                dy_broadcast_dims.data() + ndim - y_ndim, 1);
      std::copy(y_dims.data(), y_dims.data() + y_ndim,
                dy_broadcast_dims.data() + ndim - y_ndim);

      std::vector<int> dy_reduce_dims;
      for (int idx = 0; idx <= ndim - 3; idx++) {
        if (dy_help_dims[idx] != 1 && dy_broadcast_dims[idx] == 1) {
          dy_reduce_dims.push_back(idx);
        }
      }
      // reduce sum to get grad by ReduceSum
      if (dy) {
        if (dy_reduce_dims.empty()) {
          *dy = std::move(dy_help);
        } else {
          bool keep_dim = true;
          if (dy_help.dims().size() != dy->dims().size()) {
            keep_dim = false;
          }
          ReduceSumForSolveGrad<DeviceContext, T>(&dy_help, dy, dy_reduce_dims,
                                                  keep_dim, ctx);
        }
        dy->Resize(y->dims());
      }
    } else {
      framework::TensorCopy(
          tmp_dy, ctx.GetPlace(),
          ctx.template device_context<platform::DeviceContext>(), dy);
    }

    if (input->dims() != tmp_dx.dims()) {
      Tensor dx_help;
      dx_help.Resize(tmp_dx.dims());
      dx_help.mutable_data(ctx.GetPlace(), tmp_dx.type());
      framework::TensorCopy(
          tmp_dx, ctx.GetPlace(),
          ctx.template device_context<platform::DeviceContext>(), &dx_help);

      // get dims
      std::vector<std::int64_t> x_dims = vectorize(input->dims());
      std::vector<std::int64_t> y_dims = vectorize(y->dims());

      int x_ndim = x_dims.size();
      int ndim = x_broadcast_dims.size();

      const std::vector<std::int64_t> dx_help_dims = vectorize(dx_help.dims());
      std::vector<std::int64_t> dx_broadcast_dims(ndim);

      std::fill(dx_broadcast_dims.data(),
                dx_broadcast_dims.data() + ndim - x_ndim, 1);
      std::copy(x_dims.data(), x_dims.data() + x_ndim,
                dx_broadcast_dims.data() + ndim - x_ndim);

      std::vector<int> dx_reduce_dims;
      for (int idx = 0; idx <= ndim - 3; idx++) {
        if (dx_help_dims[idx] != 1 && dx_broadcast_dims[idx] == 1) {
          dx_reduce_dims.push_back(idx);
        }
      }
      // reduce sum to get grad by ReduceSum
      if (dx) {
        dx->mutable_data<T>(ctx.GetPlace());
        if (dx_reduce_dims.empty()) {
          *dx = std::move(dx_help);
        } else {
          bool keep_dim = true;
          if (dx_help.dims().size() != dx->dims().size()) {
            keep_dim = false;
          }
          ReduceSumForSolveGrad<DeviceContext, T>(&dx_help, dx, dx_reduce_dims,
                                                  keep_dim, ctx);
        }
        dx->Resize(input->dims());
      }
    } else {
      framework::TensorCopy(
          tmp_dx, ctx.GetPlace(),
          ctx.template device_context<platform::DeviceContext>(), dx);
    }
  }
};
}  // namespace operators
}  // namespace paddle