elementwise_add_op_npu.cc 5.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <memory>
#include <string>

18
#include "paddle/fluid/framework/tensor_util.h"
19
#include "paddle/fluid/operators/elementwise/elementwise_add_op.h"
20
#include "paddle/fluid/operators/elementwise/elementwise_npu.h"
21 22 23 24
#include "paddle/fluid/operators/npu_op_runner.h"

namespace paddle {
namespace operators {
25
using Tensor = framework::Tensor;
26

27
template <typename T>
28 29 30
class ElementwiseAddNPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
31 32
    auto& dev_ctx =
        ctx.template device_context<paddle::platform::NPUDeviceContext>();
33 34 35 36 37
    auto* x = ctx.Input<framework::LoDTensor>("X");
    auto* y = ctx.Input<framework::LoDTensor>("Y");
    auto* out = ctx.Output<framework::LoDTensor>("Out");
    out->mutable_data<T>(ctx.GetPlace());

38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
    int axis = ctx.Attr<int>("axis");

    bool direct_compute = false;
    auto x_dims = x->dims();
    auto y_dims = y->dims();
    axis = (axis == -1 ? std::abs(x_dims.size() - y_dims.size()) : axis);
    if (x_dims.size() >= y_dims.size()) {
      direct_compute =
          y_dims == framework::slice_ddim(x_dims, axis, x_dims.size());
    } else {
      direct_compute =
          x_dims == framework::slice_ddim(y_dims, axis, y_dims.size());
    }

    Tensor transformed_x, transformed_y;
    if (direct_compute) {
      transformed_x.ShareDataWith(*x);
      transformed_y.ShareDataWith(*y);
    } else {
      NpuElementWiseOpBroadcast<T>(dev_ctx, x, y, axis, &transformed_x,
                                   &transformed_y);
    }
    const auto& runner =
        NpuOpRunner("Add", {transformed_x, transformed_y}, {*out}, {});
62 63 64 65 66 67 68
    auto stream =
        ctx.template device_context<paddle::platform::NPUDeviceContext>()
            .stream();
    runner.Run(stream);
  }
};

69 70 71 72
template <typename T>
class ElementwiseAddGradNPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
73 74 75 76 77 78 79 80 81 82 83
    auto& dev_ctx =
        ctx.template device_context<paddle::platform::NPUDeviceContext>();
    auto* x = ctx.Input<framework::Tensor>("X");
    auto* y = ctx.Input<framework::Tensor>("Y");
    auto* dout = ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
    auto* dx = ctx.Output<framework::Tensor>(framework::GradVarName("X"));
    auto* dy = ctx.Output<framework::Tensor>(framework::GradVarName("Y"));
    int axis = ctx.Attr<int>("axis");

    axis = (axis == -1 ? std::abs(x->dims().size() - y->dims().size()) : axis);
    auto stream = dev_ctx.stream();
84 85
    if (dx) {
      dx->mutable_data<T>(ctx.GetPlace());
86 87 88 89 90 91 92 93 94 95 96 97 98 99
      if (dx->dims() != dout->dims()) {
        std::vector<int> dst_dims_vec;
        std::vector<int> reduce_axes;
        auto src_dims = dx->dims();
        auto dout_dims = dout->dims();

        int src_axis = (src_dims.size() < dout_dims.size() ? axis : 0);
        for (int ax = 0; ax < dout_dims.size(); ++ax) {
          if ((ax < src_axis || ax >= src_axis + src_dims.size()) ||
              (dout_dims[ax] > 1 && src_dims[ax - src_axis] == 1)) {
            reduce_axes.push_back(ax);
          } else {
            dst_dims_vec.push_back(dout_dims[ax]);
          }
100
        }
101 102 103 104 105 106 107 108
        if (!reduce_axes.empty()) {
          Tensor tmp;
          tmp.ShareDataWith(*dx);
          tmp.Resize(framework::make_ddim(dst_dims_vec));
          const auto& runner =
              NpuOpRunner("ReduceSumD", {*dout}, {tmp},
                          {{"axes", reduce_axes}, {"keep_dims", false}});
          runner.Run(stream);
109 110
        }
      } else {
111
        framework::TensorCopy(*dout, ctx.GetPlace(), dev_ctx, dx);
112 113 114
      }
    }
    if (dy) {
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
      dy->mutable_data<T>(ctx.GetPlace());
      if (dy->dims() != dout->dims()) {
        std::vector<int> dst_dims_vec;
        std::vector<int> reduce_axes;
        auto src_dims = dy->dims();
        auto dout_dims = dout->dims();

        int src_axis = (src_dims.size() < dout_dims.size() ? axis : 0);
        for (int ax = 0; ax < dout_dims.size(); ++ax) {
          if ((ax < src_axis || ax >= src_axis + src_dims.size()) ||
              (dout_dims[ax] > 1 && src_dims[ax - src_axis] == 1)) {
            reduce_axes.push_back(ax);
          } else {
            dst_dims_vec.push_back(dout_dims[ax]);
          }
130
        }
131 132 133 134 135 136 137 138
        if (!reduce_axes.empty()) {
          Tensor tmp;
          tmp.ShareDataWith(*dy);
          tmp.Resize(framework::make_ddim(dst_dims_vec));
          const auto& runner =
              NpuOpRunner("ReduceSumD", {*dout}, {tmp},
                          {{"axes", reduce_axes}, {"keep_dims", false}});
          runner.Run(stream);
139 140
        }
      } else {
141
        framework::TensorCopy(*dout, ctx.GetPlace(), dev_ctx, dy);
142 143 144 145 146
      }
    }
  }
};

147 148 149 150
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
151 152 153 154
namespace plat = paddle::platform;

REGISTER_OP_NPU_KERNEL(elementwise_add, ops::ElementwiseAddNPUKernel<float>,
                       ops::ElementwiseAddNPUKernel<plat::float16>);
155

156 157 158
REGISTER_OP_NPU_KERNEL(elementwise_add_grad,
                       ops::ElementwiseAddGradNPUKernel<float>,
                       ops::ElementwiseAddGradNPUKernel<plat::float16>);