c_allreduce_op.h 9.9 KB
Newer Older
1
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
16 17

#include <string>
18 19 20 21

#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_registry.h"
22 23
#include "paddle/fluid/memory/memcpy.h"
#include "paddle/fluid/memory/memory.h"
24

25
#if defined(PADDLE_WITH_NCCL)
26 27 28 29
#include "paddle/fluid/platform/collective_helper.h"
#include "paddle/fluid/platform/nccl_helper.h"
#endif

30 31 32 33 34
#if defined(PADDLE_WITH_GLOO)
#include <gloo/allreduce.h>
#include "paddle/fluid/framework/fleet/gloo_wrapper.h"
#endif

35 36 37 38 39
#if defined(PADDLE_WITH_ASCEND_CL)
#include "paddle/fluid/platform/collective_helper.h"
#include "paddle/fluid/platform/hccl_helper.h"
#endif

40 41 42
namespace paddle {
namespace operators {

43 44 45 46 47 48 49 50 51 52 53 54 55
enum ReduceType { kRedSum, kRedMax, kRedMin, kRedProd };

class CAllReduceOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    ctx->SetOutputDim("Out", ctx->GetInputDim("X"));
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
56 57
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace());
58 59 60 61 62 63 64
  }
};

template <ReduceType red_type, typename T>
class CAllReduceOpCPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
#if defined(PADDLE_WITH_GLOO)
    auto in = ctx.Input<framework::Tensor>("X");
    auto out = ctx.Output<framework::Tensor>("Out");

    auto place = ctx.GetPlace();
    int64_t send_numel = in->numel();
    const T* send_buff = in->data<T>();
    T* recv_buff = out->mutable_data<T>(in->dims(), place);
    auto gloo = paddle::framework::GlooWrapper::GetInstance();
    PADDLE_ENFORCE_EQ(
        gloo->IsInitialized(), true,
        platform::errors::PreconditionNotMet(
            "You must initialize the gloo environment first to use it."));
    gloo::AllreduceOptions opts(gloo->GetContext());
    opts.setInput(const_cast<T*>(send_buff), send_numel);
    opts.setOutput(recv_buff, send_numel);
    switch (red_type) {
      case kRedSum:
        opts.setReduceFunction(
            static_cast<void (*)(void*, const void*, const void*, size_t)>(
                &gloo::sum<T>));
        break;
      case kRedMax:
        opts.setReduceFunction(
            static_cast<void (*)(void*, const void*, const void*, size_t)>(
                &gloo::max<T>));
        break;
      case kRedMin:
        opts.setReduceFunction(
            static_cast<void (*)(void*, const void*, const void*, size_t)>(
                &gloo::min<T>));
        break;
      case kRedProd:
        opts.setReduceFunction(
            static_cast<void (*)(void*, const void*, const void*, size_t)>(
                &gloo::product<T>));
        break;
      default:
        PADDLE_ENFORCE_EQ(true, false,
                          platform::errors::InvalidArgument(
                              "Invalid reduce type: %d.", red_type));
    }
    gloo::allreduce(opts);
#else
    PADDLE_THROW(platform::errors::Unavailable(
        "PaddlePaddle should compile with GLOO by setting WITH_GLOO=ON"));
#endif
112 113 114
  }
};

115 116 117 118 119
template <ReduceType red_type, typename T>
class CAllReduceOpASCENDKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
#if defined(PADDLE_WITH_ASCEND_CL)
120

121
    // we need to pre-allocate 512 Bytes before the data
122 123 124 125
    // and 512 Bytes after the data, so the hccl allreduce
    // can work. This is a must acooding to huawei peer.
    #define PRE_MALLOC_SIZE_BYTES 512

126 127 128 129 130 131
    auto in = ctx.Input<framework::LoDTensor>("X");
    auto out = ctx.Output<framework::LoDTensor>("Out");
    auto place = ctx.GetPlace();
    hcclDataType_t dtype = platform::ToHCCLDataType(in->type());
    int64_t numel = in->numel();

132 133 134 135 136 137
    int64_t pre_tmp_size = PRE_MALLOC_SIZE_BYTES / sizeof(T);
    int64_t tmp_numel = numel + pre_tmp_size * 2;

    paddle::framework::LoDTensor tmp_in, tmp_out;
    tmp_in.Resize({tmp_numel});
    tmp_out.Resize({tmp_numel});
138 139
    auto p_tmp_in = tmp_in.mutable_data<T>(place);  // allocate
    auto p_tmp_out = tmp_out.mutable_data<T>(place);  // allocate
140 141 142 143

    void* sendbuff = reinterpret_cast<void*>(tmp_in.data<T>() + pre_tmp_size);
    void* recvbuff = reinterpret_cast<void*>(tmp_out.data<T>() + pre_tmp_size);

144 145
    int ring_id = ctx.Attr<int>("ring_id");
    std::string group = std::string(HCOM_GROUP_PREFIX) + std::to_string(ring_id);
146
    auto comm = paddle::platform::HCCLCommContext::Instance().Get(ring_id, place);
147
    std::string tag = std::to_string(ring_id) + "_" + std::to_string(comm->NextTagId());
148 149

    aclrtStream stream = nullptr;
150
    auto dev_ctx = platform::DeviceContextPool::Instance().Get(place);
151 152 153 154 155 156
    if (ctx.Attr<bool>("use_calc_stream")) {
      stream = static_cast<platform::NPUDeviceContext*>(dev_ctx)->stream();
    } else {
      stream = comm->stream();
    }

157 158 159 160
    // we need to memset this memory firstly to avoid core by hccl
    platform::NPUMemsetAsync(static_cast<void*>(p_tmp_in), 0, tmp_numel*sizeof(T), stream);
    platform::NPUMemsetAsync(static_cast<void*>(p_tmp_out), 0, tmp_numel*sizeof(T), stream);

161 162
    auto npu_place = BOOST_GET_CONST(platform::NPUPlace, place);

163
    memory::Copy(npu_place, sendbuff,
164 165 166 167
                 npu_place, reinterpret_cast<void*>(const_cast<T*>(in->data<T>())),
                 numel * sizeof(T),
                 stream);

168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
    hcclRedOp_t hccl_red_type = HCCL_REP_OP_SUM;
    switch (red_type) {
      case kRedSum:
        hccl_red_type = HCCL_REP_OP_SUM;
        break;

      case kRedMax:
        hccl_red_type = HCCL_REP_OP_MAX;
        break;

      case kRedMin:
        hccl_red_type = HCCL_REP_OP_MIN;
        break;

      case kRedProd:
        hccl_red_type = HCCL_REP_OP_PROD;
        break;

      default:
        PADDLE_THROW(platform::errors::InvalidArgument(
            "Invalid reduce type: %d", red_type));
    }

    VLOG(3) << "begin hccl allreduce, parameter is: "
      << "input num: " << numel
      << "dtype: " << dtype
      << "hccl_red_type: " << hccl_red_type
      << ", group is: " << group
      << ", tag is " << tag;

    PADDLE_ENFORCE_NPU_SUCCESS(platform::dynload::hcom_all_reduce(
        tag.c_str(), sendbuff, recvbuff, numel, dtype, hccl_red_type, group.c_str(), (void*)stream));

201
    memory::Copy(npu_place, reinterpret_cast<void*>(out->data<T>()),
202
                 npu_place, recvbuff,
203 204
                 numel * sizeof(T),
                 stream);
205

206
    out->Resize(in->dims());
207 208
#else
    PADDLE_THROW(platform::errors::PreconditionNotMet(
209
        "PaddlePaddle should compile with NPU."));
210 211 212 213
#endif
  }
};

214 215
template <ReduceType red_type, typename T>
class CAllReduceOpCUDAKernel : public framework::OpKernel<T> {
216 217
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
218
#if defined(PADDLE_WITH_NCCL)
219 220 221
    auto in = ctx.Input<framework::Tensor>("X");
    auto out = ctx.Output<framework::Tensor>("Out");

222
    auto place = ctx.GetPlace();
223
    ncclDataType_t dtype = platform::ToHCCLDataType(in->type());
224 225 226 227 228 229
    int64_t numel = in->numel();
    const void* sendbuff = in->data<void>();
    out->Resize(in->dims());
    void* recvbuff = out->mutable_data<T>(place);

    int rid = ctx.Attr<int>("ring_id");
230
    auto comm = platform::NCCLCommContext::Instance().Get(rid, place);
231 232 233 234 235 236 237 238 239

    cudaStream_t stream = nullptr;
    if (ctx.Attr<bool>("use_calc_stream")) {
      auto dev_ctx = platform::DeviceContextPool::Instance().Get(place);
      stream = static_cast<platform::CUDADeviceContext*>(dev_ctx)->stream();
    } else {
      stream = comm->stream();
    }

240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
    ncclRedOp_t nccl_red_type = ncclSum;
    switch (red_type) {
      case kRedSum:
        nccl_red_type = ncclSum;
        break;

      case kRedMax:
        nccl_red_type = ncclMax;
        break;

      case kRedMin:
        nccl_red_type = ncclMin;
        break;

      case kRedProd:
        nccl_red_type = ncclProd;
        break;

      default:
M
MRXLT 已提交
259 260
        PADDLE_THROW(platform::errors::InvalidArgument(
            "Invalid reduce type: %d", red_type));
261 262
    }

263
    PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::ncclAllReduce(
264
        sendbuff, recvbuff, (u64)numel, dtype, nccl_red_type, comm->comm(), stream));
265
#else
M
MRXLT 已提交
266 267
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "PaddlePaddle should compile with GPU."));
268 269 270 271
#endif
  }
};

272 273 274 275 276 277 278
class CAllReduceOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() {
    AddInput("X", "(Tensor), tensor to be allreduced.");
    AddOutput("Out", "(Tensor) the allreduced result.");
    AddAttr<int>("ring_id", "(int default 0) communication ring id.")
        .SetDefault(0);
279 280 281 282
#if defined(PADDLE_WITH_ASCEND_CL)
    AddAttr<std::string>("tag", "(string default tag) tag for all reduce.")
        .SetDefault("tag");
#endif
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
    AddAttr<bool>(
        "use_calc_stream",
        "(bool default false) eject CUDA operations to calculation stream.")
        .SetDefault(false);
    AddComment(string::Sprintf(R"DOC(
CAllReduce %s Operator

Call collective AllReduce with reduce type %s. If input and output are
the same variable, in-place allreduce will be used.
Reference: https://docs.nvidia.com/deeplearning/sdk/nccl-developer-guide/docs/usage/operations.html#allreduce
)DOC",
                               GetName(), GetName()));
  }

 protected:
  virtual std::string GetName() const = 0;
};

301 302
}  // namespace operators
}  // namespace paddle