clip_op.cu 2.5 KB
Newer Older
W
wanghaoshuang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include "paddle/operators/clip_op.h"

#define CUDA_1D_KERNEL_LOOP(i, n)                            \
  for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < n; \
       i += blockDim.x * gridDim.x)

namespace paddle {
namespace operators {

24
using framework::LoDTensor;
W
wanghaoshuang 已提交
25 26 27 28

template <typename T>
__global__ void ClipGradientKernel(const int N, const T min, const T max,
                                   const T* Y, const T* dY, T* dX) {
W
wanghaoshuang 已提交
29 30 31 32 33 34 35
  CUDA_1D_KERNEL_LOOP(i, N) {
    if (Y[i] > min && Y[i] < max) {
      dX[i] = dY[i];
    } else {
      dX[i] = 0;
    }
  }
W
wanghaoshuang 已提交
36 37 38 39 40 41
}

template <typename T>
class ClipGradientOpCUDAKernel : public framework::OpKernel {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
42 43 44 45
    auto max = context.Attr<float>("max");
    auto min = context.Attr<float>("min");
    auto* d_out = context.Input<LoDTensor>(framework::GradVarName("Out"));
    auto* d_x = context.Output<LoDTensor>(framework::GradVarName("X"));
W
wanghaoshuang 已提交
46 47 48 49 50 51 52
    if (d_x != nullptr) {
      auto* x = context.Input<LoDTensor>("X");
      auto dims = d_x->dims();
      int64_t count = d_out->numel();
      auto d_x_data = d_x->mutable_data<T>(context.GetPlace());
      auto d_out_data = d_out->data<T>();
      auto x_data = x->data<T>();
W
wanghaoshuang 已提交
53

W
wanghaoshuang 已提交
54 55 56 57 58 59 60 61 62 63
      int N = d_x->dims()[0];
      int D = d_x->dims()[1];
      int block = 512;
      int grid = (N * D + block - 1) / block;
      ClipGradientKernel<T><<<
          grid, block, 0, reinterpret_cast<const platform::CUDADeviceContext&>(
                              context.device_context())
                              .stream()>>>(count, min, max, x_data, d_out_data,
                                           d_x_data);
    }
W
wanghaoshuang 已提交
64 65 66 67 68 69 70 71 72 73
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_GPU_KERNEL(clip,
                       ops::ClipKernel<paddle::platform::GPUPlace, float>);
REGISTER_OP_GPU_KERNEL(clip_grad, ops::ClipGradientOpCUDAKernel<float>);