sequence_pooling.cc 9.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/math/sequence_pooling.h"
A
Abhinav Arora 已提交
16
#include <string>
Y
Yi Wang 已提交
17
#include "paddle/fluid/operators/math/math_function.h"
18 19 20 21 22

namespace paddle {
namespace operators {
namespace math {

D
dzhwinter 已提交
23 24 25 26 27 28 29 30 31
using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;

32
template <typename T>
D
dzhwinter 已提交
33
class MaxSeqPoolFunctor {
34
 public:
Q
QI JUN 已提交
35
  void operator()(const platform::CPUDeviceContext& context,
36 37 38 39 40
                  const framework::LoDTensor& input, framework::Tensor* output,
                  framework::Tensor* index) {
    auto in_dims = input.dims();
    auto out_dims = output->dims();
    auto idx_dims = index->dims();
D
dangqingqing 已提交
41 42 43
    PADDLE_ENFORCE_GT(in_dims.size(), 1);
    PADDLE_ENFORCE_GT(out_dims.size(), 1);
    for (int64_t i = 1; i < in_dims.size(); ++i) {
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
      PADDLE_ENFORCE_EQ(in_dims[i], out_dims[i]);
    }
    PADDLE_ENFORCE_EQ(idx_dims, out_dims);

    auto starts = input.lod()[0];
    const T* in_data = input.data<T>();
    T* out_data = output->data<T>();
    int* max_index = index->data<int>();

    int64_t num_seq = out_dims[0];
    int64_t dim = output->numel() / num_seq;
    for (int64_t i = 0; i < num_seq; ++i) {
      for (int64_t k = 0; k < dim; ++k) {
        out_data[i * dim + k] = in_data[starts[i] * dim + k];
        max_index[i * dim + k] = starts[i];
      }
      for (size_t j = starts[i] + 1; j < starts[i + 1]; ++j) {
        for (int64_t k = 0; k < dim; ++k) {
          if (in_data[j * dim + k] > out_data[i * dim + k]) {
            out_data[i * dim + k] = in_data[j * dim + k];
            max_index[i * dim + k] = j;
          }
        }
      }
    }
  }
};

template <typename T>
D
dzhwinter 已提交
73
class MaxSeqPoolGradFunctor {
74
 public:
Q
QI JUN 已提交
75
  void operator()(const platform::CPUDeviceContext& context,
76 77 78 79 80 81
                  const framework::Tensor& out_grad,
                  const framework::Tensor& index,
                  framework::LoDTensor* in_grad) {
    auto og_dims = out_grad.dims();
    auto ig_dims = in_grad->dims();
    auto idx_dims = index.dims();
D
dangqingqing 已提交
82 83 84
    PADDLE_ENFORCE_GT(og_dims.size(), 1);
    PADDLE_ENFORCE_GT(ig_dims.size(), 1);
    for (int64_t i = 1; i < og_dims.size(); ++i) {
85 86 87 88 89 90 91 92
      PADDLE_ENFORCE_EQ(og_dims[i], ig_dims[i]);
    }
    PADDLE_ENFORCE_EQ(idx_dims, og_dims);

    const T* og_data = out_grad.data<T>();
    const int* max_index = index.data<int>();
    T* ig_data = in_grad->data<T>();

Q
QI JUN 已提交
93
    SetConstant<platform::CPUDeviceContext, T> set_zero;
94 95 96
    set_zero(context, in_grad, static_cast<T>(0.0));
    int64_t num_seq = og_dims[0];
    int64_t dim = out_grad.numel() / num_seq;
D
dangqingqing 已提交
97 98
    for (int64_t i = 0; i < num_seq; ++i) {
      for (int64_t j = 0; j < dim; ++j) {
99 100 101 102 103 104 105
        int step_id = max_index[i * dim + j];
        ig_data[step_id * dim + j] = og_data[i * dim + j];
      }
    }
  }
};

106 107 108 109 110 111
template <typename T>
class LastFirstSeqPoolFunctor {
 public:
  void operator()(const platform::CPUDeviceContext& context,
                  const framework::LoDTensor& input, framework::Tensor* output,
                  const std::string pooltype) {
B
bingyanghuang 已提交
112
  //Create pointers to input and output data 
113 114
  auto* in_data = input.data<T>();
  auto* out_data = output->data<T>();
B
bingyanghuang 已提交
115

B
bingyanghuang 已提交
116 117
  //Calculate the size of each item in sequence
  int64_t item_size = input.numel() / input.dims()[0];
118
  auto lod = input.lod()[0];
B
bingyanghuang 已提交
119
  int seq_num = static_cast<int>(lod.size()) - 1;
120
  if (pooltype == "LAST"){
B
bingyanghuang 已提交
121
      for (int i=0;  i < seq_num; ++i ){
B
bingyanghuang 已提交
122
            //Calculate the length of each sequence
123
            int64_t seq_len =  static_cast<int64_t>(lod[i + 1] - lod[i]);
B
bingyanghuang 已提交
124
            //Point to the begin of next sequence
B
bingyanghuang 已提交
125 126 127 128
            in_data += seq_len* item_size;
            //Copy the last item to output
            std::memcpy(out_data,(in_data-item_size),item_size*sizeof(T));
            out_data += item_size;
129 130 131
       }
  }
  else if(pooltype == "FIRST"){
B
bingyanghuang 已提交
132
      for (int i=0;  i < seq_num; ++i ){
B
bingyanghuang 已提交
133
            //Calculate the length of each sequence 
134
            int64_t seq_len =  static_cast<int64_t>(lod[i + 1] - lod[i]);
B
bingyanghuang 已提交
135 136
            //Copy the first item of sequence to output
            std::memcpy(out_data,in_data,item_size*sizeof(T));
B
bingyanghuang 已提交
137
            //Point to the next sequence
B
bingyanghuang 已提交
138 139
            in_data += seq_len * item_size;
            out_data += item_size;
140 141
       }
     }
B
bingyanghuang 已提交
142 143 144
   else {
        PADDLE_THROW("it's not LAST or FIRST pool type");
      }
145 146 147
   }
};

D
dzhwinter 已提交
148 149 150 151 152 153 154 155 156 157 158 159 160
template <typename T>
class SequencePoolFunctor<platform::CPUDeviceContext, T> {
 public:
  /* max pool has index output */
  void operator()(const platform::CPUDeviceContext& context,
                  const std::string pooltype, const framework::LoDTensor& input,
                  framework::Tensor* output,
                  framework::Tensor* index = nullptr) {
    if (pooltype == "MAX") {
      math::MaxSeqPoolFunctor<T> max_pool;
      max_pool(context, input, output, index);
      return;
    }
161 162 163 164 165 166
    if (pooltype == "LAST" || pooltype == "FIRST") {
      math::LastFirstSeqPoolFunctor<T> lastfirst_pool;
      lastfirst_pool(context, input, output, pooltype);
      return;
    }

D
dzhwinter 已提交
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
    auto lod = input.lod()[0];
    auto& place = *context.eigen_device();
    for (int i = 0; i < static_cast<int>(lod.size()) - 1; ++i) {
      Tensor in_t =
          input.Slice(static_cast<int>(lod[i]), static_cast<int>(lod[i + 1]));
      Tensor out_t = output->Slice(i, i + 1);
      int64_t h = static_cast<int64_t>(lod[i + 1] - lod[i]);
      int64_t w = input.numel() / input.dims()[0];
      auto in_e = EigenMatrix<T>::From(in_t, framework::make_ddim({h, w}));
      auto out_e = EigenVector<T>::Flatten(out_t);
      if (pooltype == "AVERAGE") {
        out_e.device(place) = in_e.mean(Eigen::array<int, 1>({{0}}));
      } else if (pooltype == "SUM") {
        out_e.device(place) = in_e.sum(Eigen::array<int, 1>({{0}}));
      } else if (pooltype == "SQRT") {
        out_e.device(place) = in_e.sum(Eigen::array<int, 1>({{0}})) /
                              std::sqrt(static_cast<T>(h));
      } else {
        PADDLE_THROW("unsupported pooling pooltype");
      }
    }
  }
};

template <typename T>
class SequencePoolGradFunctor<platform::CPUDeviceContext, T> {
 public:
  void operator()(const platform::CPUDeviceContext& context,
                  const std::string pooltype, const framework::Tensor& out_grad,
                  framework::LoDTensor* in_grad,
                  /* max pool has index */
                  const framework::Tensor* index = nullptr) {
    if (pooltype == "MAX") {
      math::MaxSeqPoolGradFunctor<T> max_pool_grad;
      max_pool_grad(context, out_grad, *index, in_grad);
      return;
    }

    if (pooltype == "LAST" || pooltype == "FIRST") {
      // set X@Grad be zero at first when pooltype is LAST/FIRST
      math::SetConstant<platform::CPUDeviceContext, T> functor;
      functor(context, in_grad, 0);
    }
    auto lod = in_grad->lod()[0];
    auto& place = *context.eigen_device();
    for (int i = 0; i < static_cast<int>(lod.size()) - 1; ++i) {
      auto in_g_t = in_grad->Slice(static_cast<int>(lod[i]),
                                   static_cast<int>(lod[i + 1]));
      auto out_g_t = out_grad.Slice(i, i + 1);
      int64_t h = static_cast<int64_t>(lod[i + 1] - lod[i]);
      int64_t w = in_grad->numel() / in_grad->dims()[0];
      auto in_g_e = EigenMatrix<T>::From(in_g_t, {h, w});
      auto out_g_e = EigenMatrix<T>::From(out_g_t, {1, w});
      auto out_g_e_v = EigenVector<T>::Flatten(out_g_t);
      Eigen::DSizes<int, 2> bcast(h, 1);

      if (pooltype == "AVERAGE") {
        in_g_e.device(place) = (out_g_e / static_cast<T>(h)).broadcast(bcast);
      } else if (pooltype == "SUM") {
        in_g_e.device(place) = (out_g_e).broadcast(bcast);
      } else if (pooltype == "SQRT") {
        in_g_e.device(place) =
            (out_g_e / std::sqrt(static_cast<T>(h))).broadcast(bcast);
      } else if (pooltype == "LAST") {
        in_g_e.chip(h - 1, 0).device(place) = out_g_e_v;
      } else if (pooltype == "FIRST") {
        in_g_e.chip(0, 0).device(place) = out_g_e_v;
      } else {
        PADDLE_THROW("unsupported pooling pooltype");
      }
    }
  }
};

template class SequencePoolFunctor<platform::CPUDeviceContext, float>;
template class SequencePoolFunctor<platform::CPUDeviceContext, double>;
template class SequencePoolGradFunctor<platform::CPUDeviceContext, float>;
template class SequencePoolGradFunctor<platform::CPUDeviceContext, double>;
245 246 247 248

}  // namespace math
}  // namespace operators
}  // namespace paddle