test_matmul_api.cc 5.1 KB
Newer Older
Z
zyfncg 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <gtest/gtest.h>
#include <memory>

18
#include "paddle/pten/api/include/api.h"
Z
zyfncg 已提交
19

20
#include "paddle/pten/api/lib/utils/allocator.h"
Z
zyfncg 已提交
21 22
#include "paddle/pten/core/dense_tensor.h"
#include "paddle/pten/core/kernel_registry.h"
23
#include "paddle/pten/kernels/copy_kernel.h"
Z
zyfncg 已提交
24

25 26 27
namespace paddle {
namespace tests {

Z
zyfncg 已提交
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
namespace framework = paddle::framework;
using DDim = paddle::framework::DDim;

TEST(API, matmul_cpu) {
  // 1. create tensor
  const auto alloc = std::make_shared<paddle::experimental::DefaultAllocator>(
      paddle::platform::CPUPlace());
  auto dense_x = std::make_shared<pten::DenseTensor>(
      alloc,
      pten::DenseTensorMeta(pten::DataType::FLOAT32,
                            framework::make_ddim({3, 3}),
                            pten::DataLayout::NCHW));

  auto* dense_x_data = dense_x->mutable_data<float>();

  auto dense_y = std::make_shared<pten::DenseTensor>(
      alloc,
      pten::DenseTensorMeta(pten::DataType::FLOAT32,
                            framework::make_ddim({3, 3}),
                            pten::DataLayout::NCHW));
  auto* dense_y_data = dense_y->mutable_data<float>();

  for (size_t i = 0; i < 9; ++i) {
    dense_x_data[i] = 1.0;
    dense_y_data[i] = 2.0;
  }
  std::vector<float> sum(9, 6.0);

  paddle::experimental::Tensor x(dense_x);
  paddle::experimental::Tensor y(dense_y);

  // 2. test API
  auto out = paddle::experimental::matmul(x, y, false, false);

  // 3. check result
63 64 65
  ASSERT_EQ(out.dims().size(), 2);
  ASSERT_EQ(out.dims()[0], 3);
  ASSERT_EQ(out.dims()[1], 3);
Z
zyfncg 已提交
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
  ASSERT_EQ(out.numel(), 9);
  ASSERT_EQ(out.type(), pten::DataType::FLOAT32);
  ASSERT_EQ(out.layout(), pten::DataLayout::NCHW);
  ASSERT_EQ(out.initialized(), true);

  auto dense_out = std::dynamic_pointer_cast<pten::DenseTensor>(out.impl());

  for (size_t i = 0; i < 9; i++) {
    ASSERT_NEAR(sum[i], dense_out->data<float>()[i], 1e-6f);
  }
}

#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
TEST(API, matmul_cuda) {
  // Prepare CPU Dense Tensor
  const auto alloc_cpu =
      std::make_shared<paddle::experimental::DefaultAllocator>(
          paddle::platform::CPUPlace());
  auto ref_x = std::make_shared<pten::DenseTensor>(
      alloc_cpu,
      pten::DenseTensorMeta(pten::DataType::FLOAT32,
                            framework::make_ddim({3, 3}),
                            pten::DataLayout::NCHW));

  auto* ref_x_data = ref_x->mutable_data<float>();

  auto ref_y = std::make_shared<pten::DenseTensor>(
      alloc_cpu,
      pten::DenseTensorMeta(pten::DataType::FLOAT32,
                            framework::make_ddim({3, 3}),
                            pten::DataLayout::NCHW));
  auto* ref_y_data = ref_y->mutable_data<float>();

  for (size_t i = 0; i < 9; ++i) {
    ref_x_data[i] = 1.0;
    ref_y_data[i] = 2.0;
  }
  std::vector<float> sum(9, 6.0);

  // 1. create tensor
  const auto alloc_cuda =
      std::make_shared<paddle::experimental::DefaultAllocator>(
          paddle::platform::CUDAPlace());
  auto dense_x = std::make_shared<pten::DenseTensor>(
      alloc_cuda,
      pten::DenseTensorMeta(pten::DataType::FLOAT32,
                            framework::make_ddim({3, 3}),
                            pten::DataLayout::NCHW));

  auto dense_y = std::make_shared<pten::DenseTensor>(
      alloc_cuda,
      pten::DenseTensorMeta(pten::DataType::FLOAT32,
                            framework::make_ddim({3, 3}),
                            pten::DataLayout::NCHW));

  auto& pool = paddle::platform::DeviceContextPool::Instance();
  auto place = paddle::platform::CUDAPlace();
  auto* dev_ctx = pool.GetByPlace(place);

125 126
  pten::Copy(*dev_ctx, *ref_x.get(), false, dense_x.get());
  pten::Copy(*dev_ctx, *ref_y.get(), false, dense_y.get());
Z
zyfncg 已提交
127 128 129 130 131 132 133 134

  paddle::experimental::Tensor x(dense_x);
  paddle::experimental::Tensor y(dense_y);

  // 2. test API
  auto out = paddle::experimental::matmul(x, y, false, false);

  // 3. check result
135 136 137
  ASSERT_EQ(out.dims().size(), 2);
  ASSERT_EQ(out.dims()[0], 3);
  ASSERT_EQ(out.dims()[1], 3);
Z
zyfncg 已提交
138 139 140 141 142 143 144 145 146 147
  ASSERT_EQ(out.numel(), 9);
  ASSERT_EQ(out.type(), pten::DataType::FLOAT32);
  ASSERT_EQ(out.layout(), pten::DataLayout::NCHW);
  ASSERT_EQ(out.initialized(), true);

  auto dense_out = std::dynamic_pointer_cast<pten::DenseTensor>(out.impl());

  auto ref_out = std::make_shared<pten::DenseTensor>(
      alloc_cpu,
      pten::DenseTensorMeta(
148
          pten::DataType::FLOAT32, out.dims(), pten::DataLayout::NCHW));
Z
zyfncg 已提交
149

150
  pten::Copy(*dev_ctx, *dense_out.get(), false, ref_out.get());
Z
zyfncg 已提交
151 152 153 154 155 156 157

  for (size_t i = 0; i < 9; i++) {
    ASSERT_NEAR(sum[i], ref_out->data<float>()[i], 1e-6f);
  }
}

#endif
158 159 160

}  // namespace tests
}  // namespace paddle