spectral_helper.h 16.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include "paddle/fluid/operators/spectral_op.h"

#ifdef PADDLE_WITH_HIP
#include "paddle/fluid/platform/dynload/hipfft.h"
#endif

#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/platform/dynload/cufft.h"
#endif

namespace paddle {
namespace operators {
using ScalarType = framework::proto::VarType::Type;
F
Feiyu Chan 已提交
30 31
const int64_t kMaxFFTNdim = 3;
const int64_t kMaxDataNdim = kMaxFFTNdim + 1;
32 33
// This struct is used to easily compute hashes of the
// parameters. It will be the **key** to the plan cache.
F
Feiyu Chan 已提交
34 35
struct FFTConfigKey {
  // between 1 and kMaxFFTNdim, i.e., 1 <= signal_ndim <= 3
36 37 38 39 40 41 42 43
  int64_t signal_ndim_;
  // These include additional batch dimension as well.
  int64_t sizes_[kMaxDataNdim];
  int64_t input_shape_[kMaxDataNdim];
  int64_t output_shape_[kMaxDataNdim];
  FFTTransformType fft_type_;
  ScalarType value_type_;

F
Feiyu Chan 已提交
44
  FFTConfigKey() = default;
45

F
Feiyu Chan 已提交
46 47 48 49
  FFTConfigKey(const std::vector<int64_t>& in_shape,
               const std::vector<int64_t>& out_shape,
               const std::vector<int64_t>& signal_size,
               FFTTransformType fft_type, ScalarType value_type) {
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
    // Padding bits must be zeroed for hashing
    memset(this, 0, sizeof(*this));
    signal_ndim_ = signal_size.size() - 1;
    fft_type_ = fft_type;
    value_type_ = value_type;

    std::copy(signal_size.cbegin(), signal_size.cend(), sizes_);
    std::copy(in_shape.cbegin(), in_shape.cend(), input_shape_);
    std::copy(out_shape.cbegin(), out_shape.cend(), output_shape_);
  }
};

#if defined(PADDLE_WITH_CUDA)
// An RAII encapsulation of cuFFTHandle
class CuFFTHandle {
  ::cufftHandle handle_;

 public:
  CuFFTHandle() {
    PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cufftCreate(&handle_));
  }

F
Feiyu Chan 已提交
72 73 74 75 76 77
  CuFFTHandle(const CuFFTHandle& other) = delete;
  CuFFTHandle& operator=(const CuFFTHandle& other) = delete;

  CuFFTHandle(CuFFTHandle&& other) = delete;
  CuFFTHandle& operator=(CuFFTHandle&& other) = delete;

78 79 80 81 82 83 84 85 86 87 88 89
  ::cufftHandle& get() { return handle_; }
  const ::cufftHandle& get() const { return handle_; }

  ~CuFFTHandle() {
    PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cufftDestroy(handle_));
  }
};

using plan_size_type = long long int;  // NOLINT
// This class contains all the information needed to execute a cuFFT plan:
//   1. the plan
//   2. the workspace size needed
F
Feiyu Chan 已提交
90
class FFTConfig {
91 92 93 94
 public:
  // Only move semantics is enought for this class. Although we already use
  // unique_ptr for the plan, still remove copy constructor and assignment op so
  // we don't accidentally copy and take perf hit.
F
Feiyu Chan 已提交
95 96
  explicit FFTConfig(const FFTConfigKey& plan_key)
      : FFTConfig(
97 98 99 100 101
            std::vector<int64_t>(plan_key.sizes_,
                                 plan_key.sizes_ + plan_key.signal_ndim_ + 1),
            plan_key.signal_ndim_, plan_key.fft_type_, plan_key.value_type_) {}

  // sizes are full signal, including batch size and always two-sided
F
Feiyu Chan 已提交
102 103
  FFTConfig(const std::vector<int64_t>& sizes, const int64_t signal_ndim,
            FFTTransformType fft_type, ScalarType dtype)
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
      : fft_type_(fft_type), value_type_(dtype) {
    // signal sizes (excluding batch dim)
    std::vector<plan_size_type> signal_sizes(sizes.begin() + 1, sizes.end());

    // input batch size
    const auto batch = static_cast<plan_size_type>(sizes[0]);
    // const int64_t signal_ndim = sizes.size() - 1;
    PADDLE_ENFORCE_EQ(signal_ndim, sizes.size() - 1,
                      platform::errors::InvalidArgument(
                          "The signal_ndim must be equal to sizes.size() - 1,"
                          "But signal_ndim is: [%d], sizes.size() - 1 is: [%d]",
                          signal_ndim, sizes.size() - 1));

    cudaDataType itype, otype, exec_type;
    const auto complex_input = has_complex_input(fft_type);
    const auto complex_output = has_complex_output(fft_type);
    if (dtype == framework::proto::VarType::FP32) {
      itype = complex_input ? CUDA_C_32F : CUDA_R_32F;
      otype = complex_output ? CUDA_C_32F : CUDA_R_32F;
      exec_type = CUDA_C_32F;
    } else if (dtype == framework::proto::VarType::FP64) {
      itype = complex_input ? CUDA_C_64F : CUDA_R_64F;
      otype = complex_output ? CUDA_C_64F : CUDA_R_64F;
      exec_type = CUDA_C_64F;
    } else if (dtype == framework::proto::VarType::FP16) {
      itype = complex_input ? CUDA_C_16F : CUDA_R_16F;
      otype = complex_output ? CUDA_C_16F : CUDA_R_16F;
      exec_type = CUDA_C_16F;
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "cuFFT only support transforms of type float16, float32 and "
          "float64"));
    }

    // disable auto allocation of workspace to use allocator from the framework
    PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cufftSetAutoAllocation(
        plan(), /* autoAllocate */ 0));

    size_t ws_size_t;

    PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cufftXtMakePlanMany(
        plan(), signal_ndim, signal_sizes.data(),
        /* inembed */ nullptr, /* base_istride */ 1, /* idist */ 1, itype,
        /* onembed */ nullptr, /* base_ostride */ 1, /* odist */ 1, otype,
        batch, &ws_size_t, exec_type));

    ws_size = ws_size_t;
  }

F
Feiyu Chan 已提交
153 154 155 156 157 158
  FFTConfig(const FFTConfig& other) = delete;
  FFTConfig& operator=(const FFTConfig& other) = delete;

  FFTConfig(FFTConfig&& other) = delete;
  FFTConfig& operator=(FFTConfig&& other) = delete;

159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
  const cufftHandle& plan() const { return plan_ptr.get(); }

  FFTTransformType transform_type() const { return fft_type_; }
  ScalarType data_type() const { return value_type_; }
  size_t workspace_size() const { return ws_size; }

 private:
  CuFFTHandle plan_ptr;
  size_t ws_size;
  FFTTransformType fft_type_;
  ScalarType value_type_;
};

#elif defined(PADDLE_WITH_HIP)
// An RAII encapsulation of cuFFTHandle
class HIPFFTHandle {
  ::hipfftHandle handle_;

 public:
  HIPFFTHandle() {
    PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::hipfftCreate(&handle_));
  }

F
Feiyu Chan 已提交
182 183 184 185 186 187
  HIPFFTHandle(const HIPFFTHandle& other) = delete;
  HIPFFTHandle& operator=(const HIPFFTHandle& other) = delete;

  HIPFFTHandle(HIPFFTHandle&& other) = delete;
  HIPFFTHandle& operator=(HIPFFTHandle&& other) = delete;

188 189 190 191 192 193 194 195 196 197 198
  ::hipfftHandle& get() { return handle_; }
  const ::hipfftHandle& get() const { return handle_; }

  ~HIPFFTHandle() {
    PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::hipfftDestroy(handle_));
  }
};
using plan_size_type = int;
// This class contains all the information needed to execute a cuFFT plan:
//   1. the plan
//   2. the workspace size needed
F
Feiyu Chan 已提交
199
class FFTConfig {
200 201 202 203
 public:
  // Only move semantics is enought for this class. Although we already use
  // unique_ptr for the plan, still remove copy constructor and assignment op so
  // we don't accidentally copy and take perf hit.
F
Feiyu Chan 已提交
204 205
  explicit FFTConfig(const FFTConfigKey& plan_key)
      : FFTConfig(
206 207 208 209 210
            std::vector<int64_t>(plan_key.sizes_,
                                 plan_key.sizes_ + plan_key.signal_ndim_ + 1),
            plan_key.signal_ndim_, plan_key.fft_type_, plan_key.value_type_) {}

  // sizes are full signal, including batch size and always two-sided
F
Feiyu Chan 已提交
211 212
  FFTConfig(const std::vector<int64_t>& sizes, const int64_t signal_ndim,
            FFTTransformType fft_type, ScalarType dtype)
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
      : fft_type_(fft_type), value_type_(dtype) {
    // signal sizes (excluding batch dim)
    std::vector<plan_size_type> signal_sizes(sizes.begin() + 1, sizes.end());

    // input batch size
    const auto batch = static_cast<plan_size_type>(sizes[0]);
    // const int64_t signal_ndim = sizes.size() - 1;
    PADDLE_ENFORCE_EQ(signal_ndim, sizes.size() - 1,
                      platform::errors::InvalidArgument(
                          "The signal_ndim must be equal to sizes.size() - 1,"
                          "But signal_ndim is: [%d], sizes.size() - 1 is: [%d]",
                          signal_ndim, sizes.size() - 1));

    hipfftType exec_type = [&] {
      if (dtype == framework::proto::VarType::FP32) {
        switch (fft_type) {
          case FFTTransformType::C2C:
            return HIPFFT_C2C;
          case FFTTransformType::R2C:
            return HIPFFT_R2C;
          case FFTTransformType::C2R:
            return HIPFFT_C2R;
        }
      } else if (dtype == framework::proto::VarType::FP64) {
        switch (fft_type) {
          case FFTTransformType::C2C:
            return HIPFFT_Z2Z;
          case FFTTransformType::R2C:
            return HIPFFT_D2Z;
          case FFTTransformType::C2R:
            return HIPFFT_Z2D;
        }
      }
      PADDLE_THROW(platform::errors::InvalidArgument(
          "hipFFT only support transforms of type float32 and float64"));
    }();

    // disable auto allocation of workspace to use allocator from the framework
    PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::hipfftSetAutoAllocation(
        plan(), /* autoAllocate */ 0));

    size_t ws_size_t;

    PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::hipfftMakePlanMany(
        plan(), signal_ndim, signal_sizes.data(),
        /* inembed */ nullptr, /* base_istride */ 1, /* idist */ 1,
        /* onembed */ nullptr, /* base_ostride */ 1, /* odist */ 1, exec_type,
        batch, &ws_size_t));

    ws_size = ws_size_t;
  }

  const hipfftHandle& plan() const { return plan_ptr.get(); }

  FFTTransformType transform_type() const { return fft_type_; }
  ScalarType data_type() const { return value_type_; }
  size_t workspace_size() const { return ws_size; }

 private:
  HIPFFTHandle plan_ptr;
  size_t ws_size;
  FFTTransformType fft_type_;
  ScalarType value_type_;
};
#endif
F
Feiyu Chan 已提交
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464

// Hashing machinery for Key
// Fowler–Noll–Vo hash function
// see
// https://en.wikipedia.org/wiki/Fowler%E2%80%93Noll%E2%80%93Vo_hash_function
template <typename Key>
struct KeyHash {
  // Key must be a POD because we read out its memory
  // contenst as char* when hashing
  static_assert(std::is_pod<Key>::value, "Key must be plain old data type");

  size_t operator()(const Key& params) const {
    auto ptr = reinterpret_cast<const uint8_t*>(&params);
    uint32_t value = 0x811C9DC5;
    for (int i = 0; i < static_cast<int>(sizeof(Key)); ++i) {
      value ^= ptr[i];
      value *= 0x01000193;
    }
    return static_cast<size_t>(value);
  }
};

template <typename Key>
struct KeyEqual {
  // Key must be a POD because we read out its memory
  // contenst as char* when comparing
  static_assert(std::is_pod<Key>::value, "Key must be plain old data type");

  bool operator()(const Key& a, const Key& b) const {
    auto ptr1 = reinterpret_cast<const uint8_t*>(&a);
    auto ptr2 = reinterpret_cast<const uint8_t*>(&b);
    return memcmp(ptr1, ptr2, sizeof(Key)) == 0;
  }
};

#if CUDA_VERSION < 10000
// Note that the max plan number for CUDA version < 10 has to be 1023
// due to a bug that fails on the 1024th plan
constexpr size_t CUFFT_MAX_PLAN_NUM = 1023;
constexpr size_t CUFFT_DEFAULT_CACHE_SIZE = CUFFT_MAX_PLAN_NUM;
#else
constexpr size_t CUFFT_MAX_PLAN_NUM = std::numeric_limits<size_t>::max();
// The default max cache size chosen for CUDA version > 10 is arbitrary.
// This number puts a limit on how big of a plan cache should we maintain by
// default. Users can always configure it via cufft_set_plan_cache_max_size.
constexpr size_t CUFFT_DEFAULT_CACHE_SIZE = 4096;
#endif
static_assert(CUFFT_MAX_PLAN_NUM >= 0 &&
                  CUFFT_MAX_PLAN_NUM <= std::numeric_limits<size_t>::max(),
              "CUFFT_MAX_PLAN_NUM not in size_t range");
static_assert(CUFFT_DEFAULT_CACHE_SIZE >= 0 &&
                  CUFFT_DEFAULT_CACHE_SIZE <= CUFFT_MAX_PLAN_NUM,
              "CUFFT_DEFAULT_CACHE_SIZE not in [0, CUFFT_MAX_PLAN_NUM] range");

// This cache assumes that the mapping from key to value never changes.
// This is **NOT** thread-safe. Please use a mutex when using it **AND** the
// value returned from try_emplace_value.
// The contract of using this cache is that try_emplace_value should only be
// used when the max_size is positive.
class FFTConfigCache {
 public:
  using kv_t = typename std::pair<FFTConfigKey, FFTConfig>;
  using map_t = typename std::unordered_map<
      std::reference_wrapper<FFTConfigKey>, typename std::list<kv_t>::iterator,
      KeyHash<FFTConfigKey>, KeyEqual<FFTConfigKey>>;
  using map_kkv_iter_t = typename map_t::iterator;

  FFTConfigCache() : FFTConfigCache(CUFFT_DEFAULT_CACHE_SIZE) {}

  explicit FFTConfigCache(int64_t max_size) { _set_max_size(max_size); }

  FFTConfigCache(const FFTConfigCache& other) = delete;
  FFTConfigCache& operator=(const FFTConfigCache& other) = delete;

  FFTConfigCache(FFTConfigCache&& other) noexcept
      : _usage_list(std::move(other._usage_list)),
        _cache_map(std::move(other._cache_map)),
        _max_size(other._max_size) {}

  FFTConfigCache& operator=(FFTConfigCache&& other) noexcept {
    _usage_list = std::move(other._usage_list);
    _cache_map = std::move(other._cache_map);
    _max_size = other._max_size;
    return *this;
  }

  // If key is in this cache, return the cached config. Otherwise, emplace the
  // config in this cache and return it.
  FFTConfig& lookup(FFTConfigKey params) {
    PADDLE_ENFORCE_GT(_max_size, 0,
                      platform::errors::InvalidArgument(
                          "The max size of FFTConfigCache must be great than 0,"
                          "But received is [%d]",
                          _max_size));

    map_kkv_iter_t map_it = _cache_map.find(params);
    // Hit, put to list front
    if (map_it != _cache_map.end()) {
      _usage_list.splice(_usage_list.begin(), _usage_list, map_it->second);
      return map_it->second->second;
    }

    // Miss
    // remove if needed
    if (_usage_list.size() >= _max_size) {
      auto last = _usage_list.end();
      last--;
      _cache_map.erase(last->first);
      _usage_list.pop_back();
    }

    // construct new plan at list front, then insert into _cache_map
    _usage_list.emplace_front(std::piecewise_construct,
                              std::forward_as_tuple(params),
                              std::forward_as_tuple(params));
    auto kv_it = _usage_list.begin();
    _cache_map.emplace(std::piecewise_construct,
                       std::forward_as_tuple(kv_it->first),
                       std::forward_as_tuple(kv_it));
    return kv_it->second;
  }

  void clear() {
    _cache_map.clear();
    _usage_list.clear();
  }

  void resize(int64_t new_size) {
    _set_max_size(new_size);
    auto cur_size = _usage_list.size();
    if (cur_size > _max_size) {
      auto delete_it = _usage_list.end();
      for (size_t i = 0; i < cur_size - _max_size; i++) {
        delete_it--;
        _cache_map.erase(delete_it->first);
      }
      _usage_list.erase(delete_it, _usage_list.end());
    }
  }

  size_t size() const { return _cache_map.size(); }

  size_t max_size() const noexcept { return _max_size; }

  std::mutex mutex;

 private:
  // Only sets size and does value check. Does not resize the data structures.
  void _set_max_size(int64_t new_size) {
    // We check that 0 <= new_size <= CUFFT_MAX_PLAN_NUM here. Since
    // CUFFT_MAX_PLAN_NUM is of type size_t, we need to do non-negativity check
    // first.
    PADDLE_ENFORCE_GE(
        new_size, 0,
        platform::errors::InvalidArgument(
            "cuFFT plan cache size must be non-negative, But received is [%d]",
            new_size));
    PADDLE_ENFORCE_LE(new_size, CUFFT_MAX_PLAN_NUM,
                      platform::errors::InvalidArgument(
                          "cuFFT plan cache size can not be larger than [%d], "
                          "But received is [%d]",
                          CUFFT_MAX_PLAN_NUM, new_size));
    _max_size = static_cast<size_t>(new_size);
  }

  std::list<kv_t> _usage_list;
  map_t _cache_map;
  size_t _max_size;
};

static std::vector<std::unique_ptr<FFTConfigCache>> plan_caches;
static std::mutex plan_caches_mutex;

static inline FFTConfigCache& get_fft_plan_cache(int64_t device_index) {
  std::lock_guard<std::mutex> guard(plan_caches_mutex);

  if (device_index >= plan_caches.size()) {
    plan_caches.resize(device_index + 1);
  }

  if (!plan_caches[device_index]) {
    plan_caches[device_index] = std::make_unique<FFTConfigCache>();
  }

  return *plan_caches[device_index];
}

465 466
}  // namespace operators
}  // namespace paddle