batch_norm_mkldnn_op.cc 21.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "mkldnn.hpp"
#include "paddle/fluid/operators/batch_norm_op.h"
#include "paddle/fluid/platform/mkldnn_helper.h"

namespace paddle {
namespace operators {

22 23 24 25 26 27
using batch_norm_bwd = mkldnn::batch_normalization_backward;
using batch_norm_fwd = mkldnn::batch_normalization_forward;
using mkldnn::memory;
using mkldnn::primitive;
using mkldnn::reorder;
using mkldnn::stream;
28 29
using paddle::platform::MKLDNNDeviceContext;
using paddle::platform::MKLDNNMemDesc;
30
using platform::to_void_cast;
31 32 33 34 35 36 37 38 39

namespace {
template <typename T>
struct bn_type_traits {
  using op_type = T;
  using op_desc = typename op_type::desc;
  using op_prim = typename op_type::primitive_desc;
};

40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
class BatchNormMKLDNNHandler : public platform::MKLDNNHandler {
 public:
  BatchNormMKLDNNHandler(
      std::shared_ptr<batch_norm_fwd::primitive_desc> batch_norm_pd,
      const platform::MKLDNNDeviceContext &dev_ctx, mkldnn::engine engine,
      const std::string &base_key)
      : platform::MKLDNNHandler(dev_ctx, engine, base_key) {
    batch_norm_pd_ = batch_norm_pd;
  }

  std::shared_ptr<memory> AcquireScaleshiftMemoryFromPrimitive(void *ptr) {
    return this->AcquireMemoryFromPrimitive(
        batch_norm_pd_->weights_primitive_desc(), ptr, "@scaleshift_mem_p");
  }

  std::shared_ptr<memory> AcquireMeanMemoryFromPrimitive(void *ptr) {
    return this->AcquireMemoryFromPrimitive(
        batch_norm_pd_->mean_primitive_desc(), ptr, "@mean_mem_p");
  }

  std::shared_ptr<memory> AcquireVarianceMemoryFromPrimitive(void *ptr) {
    return this->AcquireMemoryFromPrimitive(
        batch_norm_pd_->variance_primitive_desc(), ptr, "@variance_mem_p");
  }

K
Krzysztof Binias 已提交
65
  std::shared_ptr<batch_norm_fwd> AcquireTestTrainingBatchNormFwd(
66 67
      std::shared_ptr<memory> src_memory,
      std::shared_ptr<memory> scaleshift_memory,
K
Krzysztof Binias 已提交
68 69
      std::shared_ptr<memory> dst_memory, std::shared_ptr<memory> mean_memory,
      std::shared_ptr<memory> variance_memory, bool is_test) {
70 71 72 73
    auto prim_key = key_ + "@batch_norm_p";
    auto batch_norm_p =
        std::static_pointer_cast<batch_norm_fwd>(dev_ctx_.GetBlob(prim_key));

K
Krzysztof Binias 已提交
74 75
    PADDLE_ENFORCE((batch_norm_p != nullptr) || !is_reusing_,
                   "Fail to find batch norm primitive in device context");
76 77

    if (batch_norm_p == nullptr) {
K
Krzysztof Binias 已提交
78 79 80 81 82 83 84 85 86 87 88
      if (is_test) {
        batch_norm_p = std::make_shared<batch_norm_fwd>(
            *batch_norm_pd_, *src_memory,
            (const mkldnn::primitive::at &)*mean_memory,
            (const mkldnn::primitive::at &)*variance_memory, *scaleshift_memory,
            *dst_memory);
      } else {
        batch_norm_p = std::make_shared<batch_norm_fwd>(
            *batch_norm_pd_, *src_memory, *scaleshift_memory, *dst_memory,
            *mean_memory, *variance_memory);
      }
89 90 91 92 93

      dev_ctx_.SetBlob(prim_key, batch_norm_p);
    } else {
      is_reusing_ = true;
    }
K
Krzysztof Binias 已提交
94

95 96
    return batch_norm_p;
  }
K
Krzysztof Binias 已提交
97

98 99
  static std::string GetHash(const memory::dims &input_dims, float epsilon,
                             unsigned flag, bool is_test, memory::format format,
K
Krzysztof Binias 已提交
100
                             const std::string &suffix = "") {
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
    auto dims2str = [](const memory::dims &operand_dims) {
      std::string dstr = "";
      for (size_t i = 0; i < operand_dims.size(); ++i) {
        dstr += std::to_string(operand_dims[i]) + "-";
      }
      return dstr;
    };
    return dims2str(input_dims) + std::to_string(epsilon) +
           std::to_string(flag) + std::to_string(is_test) +
           std::to_string(format) + suffix;
  }

 private:
  std::shared_ptr<batch_norm_fwd::primitive_desc> batch_norm_pd_;
};

std::shared_ptr<memory> UpdateMemoryData(
    const platform::MKLDNNDeviceContext &dev_ctx, const std::string &key,
    void *new_ptr) {
  auto mem = std::static_pointer_cast<memory>(dev_ctx.GetBlob(key));
  PADDLE_ENFORCE(
      mem != nullptr,
      (std::string("Fail to find memory in device context [key: ") + key + "]")
          .c_str());
  mem->set_data_handle(new_ptr);
  return mem;
}

129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
template <typename T, typename Container>
void copy_to_weights(T scale_begin, T scale_end, T shift_begin, T shift_end,
                     Container *c) {
  auto it = std::begin(*c);

  std::copy(scale_begin, scale_end, std::inserter(*c, it));
  std::copy(
      shift_begin, shift_end,
      std::inserter(*c, std::next(it, std::distance(scale_begin, scale_end))));
}

}  // namespace

template <typename T>
class BatchNormMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    const float epsilon = ctx.Attr<float>("epsilon");
    const float momentum = ctx.Attr<float>("momentum");
    const bool is_test = ctx.Attr<bool>("is_test");
149
    const bool use_global_stats = ctx.Attr<bool>("use_global_stats");
150
    const bool fuse_with_relu = ctx.Attr<bool>("fuse_with_relu");
151
    bool global_stats = is_test || use_global_stats;
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168

    const auto *x = ctx.Input<Tensor>("X");
    const auto *mean = ctx.Input<Tensor>("Mean");
    const auto *variance = ctx.Input<Tensor>("Variance");

    auto &dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
    auto mkldnn_engine = dev_ctx.GetEngine();

    auto *y = ctx.Output<Tensor>("Y");
    auto *mean_out = ctx.Output<Tensor>("MeanOut");
    auto *variance_out = ctx.Output<Tensor>("VarianceOut");
    auto *batch_mean = ctx.Output<Tensor>("SavedMean");
    auto *batch_variance = ctx.Output<Tensor>("SavedVariance");

    const auto *scale = ctx.Input<Tensor>("Scale");
    const auto *shift = ctx.Input<Tensor>("Bias");

169 170 171 172 173 174 175 176 177 178 179 180
    PADDLE_ENFORCE(x->layout() == DataLayout::kMKLDNN &&
                       x->format() != memory::format::format_undef,
                   "Wrong layout/format set for Input x tensor");

    const T *x_data = x->data<T>();
    const T *mean_data = mean->data<T>();
    const T *variance_data = variance->data<T>();
    T *y_data = y->mutable_data<T>(ctx.GetPlace());
    T *mean_out_data = mean_out->mutable_data<T>(ctx.GetPlace());
    T *variance_out_data = variance_out->mutable_data<T>(ctx.GetPlace());
    T *batch_mean_data = nullptr;
    T *batch_variance_data = nullptr;
181

182
    if (!global_stats) {
183 184
      batch_mean_data = batch_mean->mutable_data<T>(ctx.GetPlace());
      batch_variance_data = batch_variance->mutable_data<T>(ctx.GetPlace());
185 186
    }

187 188 189
    auto propagation = global_stats == true
                           ? mkldnn::prop_kind::forward_scoring
                           : mkldnn::prop_kind::forward_training;
190

191 192 193 194
    auto src_tz = paddle::framework::vectorize2int(x->dims());
    auto scale_tz = paddle::framework::vectorize2int(scale->dims());
    PADDLE_ENFORCE(scale_tz.size() == 1, "Dims of scale tensor is NOT 1");
    const unsigned int ic = scale_tz[0];
195

196 197 198 199 200 201 202 203
    // MKLDNN requires a single piece of memory for scale and shift/bias data
    const size_t scaleshift_size = 2 * ic;
    std::vector<T> scaleshift_data;
    scaleshift_data.reserve(scaleshift_size);

    copy_to_weights(scale->data<T>(), scale->data<T>() + ic, shift->data<T>(),
                    shift->data<T>() + ic, &scaleshift_data);

204
    unsigned flags = mkldnn::use_scale_shift;
205
    if (global_stats) flags |= mkldnn::use_global_stats;
206
    if (fuse_with_relu) flags |= mkldnn::fuse_bn_relu;
207

208
    // create mkldnn memory from input x tensor
209 210
    mkldnn::memory::format input_format =
        platform::MKLDNNFormatForSize(src_tz.size(), x->format());
211

212 213
    // keys for backward pass
    const std::string key = BatchNormMKLDNNHandler::GetHash(
214
        src_tz, epsilon, flags, global_stats, input_format,
215 216 217 218 219
        ctx.op().Output("SavedMean"));
    const std::string key_batch_norm_fwd_pd = key + "@bn_fwd_pd";

    auto user_src_md = platform::MKLDNNMemDesc(
        {src_tz}, platform::MKLDNNGetDataType<T>(), input_format);
220 221

    // create primitive descriptor for batch norm forward
222
    using bn_fwd_types = bn_type_traits<mkldnn::batch_normalization_forward>;
223 224 225 226 227
    auto batch_norm_fwd_desc =
        bn_fwd_types::op_desc{propagation, user_src_md, epsilon, flags};
    auto batch_norm_fwd_pd = std::make_shared<batch_norm_fwd::primitive_desc>(
        batch_norm_fwd_desc, mkldnn_engine);
    // Save conv_pd/src_memory/weights_memory for backward pass
228
    dev_ctx.SetBlob(key_batch_norm_fwd_pd, batch_norm_fwd_pd);
229

230 231
    BatchNormMKLDNNHandler handler(batch_norm_fwd_pd, dev_ctx, mkldnn_engine,
                                   key);
232

233 234
    auto src_memory =
        handler.AcquireSrcMemory(user_src_md, to_void_cast(x_data));
235

236
    // crate mkldnn memory for weights(scale/shift)
237 238
    auto scaleshift_memory =
        handler.AcquireScaleshiftMemoryFromPrimitive(scaleshift_data.data());
239

240
    // create mkldnn memory for output y tensor
241 242
    auto dst_memory = handler.AcquireDstMemory(
        batch_norm_fwd_pd->dst_primitive_desc().desc(), y_data);
243

244
    std::shared_ptr<batch_norm_fwd> batch_norm_p;
245
    if (global_stats) {
246
      // create mkldnn memory for stats (as input)
247 248 249 250 251 252
      std::shared_ptr<memory> mean_memory =
          handler.AcquireMeanMemoryFromPrimitive(to_void_cast(mean_data));
      std::shared_ptr<memory> variance_memory =
          handler.AcquireVarianceMemoryFromPrimitive(
              to_void_cast(variance_data));

K
Krzysztof Binias 已提交
253 254 255
      batch_norm_p = handler.AcquireTestTrainingBatchNormFwd(
          src_memory, scaleshift_memory, dst_memory, mean_memory,
          variance_memory, true);
256
    } else {
257
      // create mkldnn memory for stats (as output)
258 259 260 261 262
      std::shared_ptr<memory> mean_memory =
          handler.AcquireMeanMemoryFromPrimitive(batch_mean_data);
      std::shared_ptr<memory> variance_memory =
          handler.AcquireVarianceMemoryFromPrimitive(batch_variance_data);

K
Krzysztof Binias 已提交
263
      batch_norm_p = handler.AcquireTestTrainingBatchNormFwd(
264
          src_memory, scaleshift_memory, dst_memory, mean_memory,
K
Krzysztof Binias 已提交
265
          variance_memory, false);
266 267
    }

268 269 270 271 272 273 274
    y->set_layout(DataLayout::kMKLDNN);
    y->set_format(platform::GetMKLDNNFormat(*dst_memory));

    std::vector<mkldnn::primitive> pipeline;
    pipeline.push_back(*batch_norm_p);
    mkldnn::stream(mkldnn::stream::kind::eager).submit(pipeline).wait();

275
    if (!global_stats) {
276 277 278 279 280 281 282 283 284
      // mkldnn only compute stats for current batch
      // so we need compute momentum stats via Eigen lib
      EigenVectorArrayMap<T> batch_mean_e(batch_mean_data, ic);
      EigenVectorArrayMap<T> batch_variance_e(batch_variance_data, ic);
      ConstEigenVectorArrayMap<T> mean_e(mean_data, ic);
      ConstEigenVectorArrayMap<T> variance_e{variance_data, ic};

      EigenVectorArrayMap<T> running_mean_e(mean_out_data, ic);
      EigenVectorArrayMap<T> running_variance_e(variance_out_data, ic);
285 286

      auto one_minus_momentum = 1. - momentum;
287 288 289
      running_mean_e = mean_e * momentum + batch_mean_e * one_minus_momentum;
      running_variance_e =
          variance_e * momentum + batch_variance_e * one_minus_momentum;
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
    }
  }
};

template <typename T>
class BatchNormMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext &ctx) const override {
    auto &dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
    auto mkldnn_engine = dev_ctx.GetEngine();

    const float epsilon = ctx.Attr<float>("epsilon");

    const auto *x = ctx.Input<Tensor>("X");
    const auto *scale = ctx.Input<Tensor>("Scale");
    const auto *shift = ctx.Input<Tensor>("Bias");
    const auto *batch_mean = ctx.Input<Tensor>("SavedMean");
    const auto *batch_variance = ctx.Input<Tensor>("SavedVariance");

    const auto *diff_y = ctx.Input<Tensor>(framework::GradVarName("Y"));
    auto *diff_x = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto *diff_scale = ctx.Output<Tensor>(framework::GradVarName("Scale"));
    auto *diff_shift = ctx.Output<Tensor>(framework::GradVarName("Bias"));

314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
    PADDLE_ENFORCE(diff_y->layout() == DataLayout::kMKLDNN &&
                       diff_y->format() != memory::format::format_undef,
                   "Wrong layout/format set for Input diff_y tensor");

    const T *x_data = x->data<T>();
    const T *diff_y_data = diff_y->data<T>();
    const T *batch_mean_data = batch_mean->data<T>();
    const T *batch_variance_data = batch_variance->data<T>();
    const T *scale_data = scale->data<T>();
    const T *shift_data = shift->data<T>();
    T *diff_x_data = diff_x->mutable_data<T>(ctx.GetPlace());
    T *diff_scale_data = diff_scale->mutable_data<T>(ctx.GetPlace());
    T *diff_shift_data = diff_shift->mutable_data<T>(ctx.GetPlace());

    auto src_tz = paddle::framework::vectorize2int(x->dims());
    auto diff_src_tz = src_tz;
    auto dst_tz = src_tz;
    auto diff_dst_tz = dst_tz;
    auto scale_tz = paddle::framework::vectorize2int(scale->dims());
    PADDLE_ENFORCE(scale_tz.size() == 1, "Dims of scale tensor is NOT 1");

    const unsigned int ic = scale_tz[0];

    using bn_bwd_types = bn_type_traits<mkldnn::batch_normalization_backward>;
338

339 340 341 342 343
    mkldnn::memory::format dst_format =
        platform::MKLDNNFormatForSize(src_tz.size(), diff_y->format());

    mkldnn::memory::format input_format =
        platform::MKLDNNFormatForSize(src_tz.size(), x->format());
344

345 346 347 348 349 350 351
    unsigned flags = mkldnn::use_scale_shift;

    // keys from forward pass
    const std::string key = BatchNormMKLDNNHandler::GetHash(
        src_tz, epsilon, flags, false, input_format,
        ctx.op().Input("SavedMean"));
    const std::string key_batch_norm_fwd_pd = key + "@bn_fwd_pd";
352

353 354
    // keys for primitives reuse
    const std::string key_with_hash =
K
Krzysztof Binias 已提交
355 356
        key + BatchNormMKLDNNHandler::GetHash(src_tz, epsilon, flags, false,
                                              input_format);
357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
    const std::string key_batch_norm_bwd_p =
        key_with_hash + "@batch_norm_bwd_p";
    const std::string key_batch_norm_src_mem_p =
        key_with_hash + "@batch_norm_bwd_src_mem_p";
    const std::string key_batch_norm_mean_mem_p =
        key_with_hash + "@batch_norm_bwd_mean_mem_p";
    const std::string key_batch_norm_variance_mem_p =
        key_with_hash + "@batch_norm_bwd_variance_mem_p";
    const std::string key_batch_norm_scaleshift_mem_p =
        key_with_hash + "@batch_norm_bwd_scaleshift_mem_p";
    const std::string key_batch_norm_diff_scaleshift_mem_p =
        key_with_hash + "@batch_norm_bwd_diff_scaleshift_mem_p";
    const std::string key_batch_norm_diff_src_mem_p =
        key_with_hash + "@batch_norm_bwd_diff_src_mem_p";
    const std::string key_batch_norm_diff_dst_mem_p =
        key_with_hash + "@batch_norm_bwd_diff_dst_mem_p";
373

374 375
    primitive reorder_diff_dst;
    bool is_diff_dst_reordered = false;
376 377 378
    auto user_diff_dst_memory = memory(
        {{{diff_dst_tz}, memory::data_type::f32, dst_format}, mkldnn_engine},
        to_void_cast(diff_y_data));
379

380
    // MKLDNN requires a single piece of memory for scale and shift/bias data
381 382 383 384
    const size_t scaleshift_size = 2 * ic;

    std::vector<T> scaleshift_data;
    scaleshift_data.reserve(scaleshift_size);
385 386
    copy_to_weights(scale_data, scale_data + ic, shift_data, shift_data + ic,
                    &scaleshift_data);
387 388 389

    std::vector<T> diff_scaleshift_data;
    diff_scaleshift_data.reserve(scaleshift_size);
390

391 392 393 394 395
    auto batch_norm_fwd_pd =
        std::static_pointer_cast<batch_norm_fwd::primitive_desc>(
            dev_ctx.GetBlob(key_batch_norm_fwd_pd));
    PADDLE_ENFORCE(batch_norm_fwd_pd != nullptr,
                   "Fail to find batch_norm_fwd_pd in device context");
396

397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
    auto batch_norm_bwd_p = std::static_pointer_cast<batch_norm_bwd>(
        dev_ctx.GetBlob(key_batch_norm_bwd_p));

    if (batch_norm_bwd_p == nullptr) {
      auto src_memory = std::shared_ptr<memory>(new memory(
          {{{src_tz}, memory::data_type::f32, input_format}, mkldnn_engine},
          to_void_cast(x_data)));

      // for diff_dst, try to use same format as dst in forward pass
      auto diff_dst_pd = batch_norm_fwd_pd.get()->dst_primitive_desc();
      auto diff_dst_md = diff_dst_pd.desc();

      // create primitive descriptor for batch norm backward
      auto batch_norm_bwd_desc = bn_bwd_types::op_desc{
          mkldnn::prop_kind::backward, diff_dst_md,
          src_memory->get_primitive_desc().desc(), epsilon, flags};
      auto batch_norm_bwd_pd = bn_bwd_types::op_prim{
          batch_norm_bwd_desc, mkldnn_engine, *batch_norm_fwd_pd};

      // reorder user_diff_dst if it's not in preferred format
      auto diff_dst_memory = std::make_shared<memory>(user_diff_dst_memory);
      if (diff_dst_pd != user_diff_dst_memory.get_primitive_desc()) {
        diff_dst_memory = std::make_shared<memory>(diff_dst_pd);
        reorder_diff_dst = reorder(user_diff_dst_memory, *diff_dst_memory);
        is_diff_dst_reordered = true;
      }

      // create mkldnn memory for input tensors (src/mean/variance)
      auto mean_memory =
          std::make_shared<memory>(batch_norm_bwd_pd.mean_primitive_desc(),
                                   to_void_cast(batch_mean_data));
      auto variance_memory =
          std::make_shared<memory>(batch_norm_bwd_pd.variance_primitive_desc(),
                                   to_void_cast(batch_variance_data));

      // create mkldnn memory for input tensors (scale/shift)
      auto scaleshift_memory = std::make_shared<memory>(
          batch_norm_bwd_pd.weights_primitive_desc(), scaleshift_data.data());

      // create mkldnn memory for output diff weights (combined scale/shift)
      auto diff_scaleshift_memory = std::make_shared<memory>(
          batch_norm_bwd_pd.diff_weights_primitive_desc(),
          diff_scaleshift_data.data());

      // here assume diff_src is in the same format of src
      auto diff_src_memory = std::make_shared<memory>(
          src_memory->get_primitive_desc(), diff_x_data);

      // finally create batch_norm backward primitive
      batch_norm_bwd_p = std::make_shared<batch_norm_bwd>(
          batch_norm_bwd_pd, *src_memory, *mean_memory, *variance_memory,
          *diff_dst_memory, *scaleshift_memory, *diff_src_memory,
          *diff_scaleshift_memory);

      dev_ctx.SetBlob(key_batch_norm_bwd_p, batch_norm_bwd_p);
      dev_ctx.SetBlob(key_batch_norm_src_mem_p, src_memory);
      dev_ctx.SetBlob(key_batch_norm_mean_mem_p, mean_memory);
      dev_ctx.SetBlob(key_batch_norm_variance_mem_p, variance_memory);
      dev_ctx.SetBlob(key_batch_norm_scaleshift_mem_p, scaleshift_memory);
      dev_ctx.SetBlob(key_batch_norm_diff_scaleshift_mem_p,
                      diff_scaleshift_memory);
      dev_ctx.SetBlob(key_batch_norm_diff_src_mem_p, diff_src_memory);
      dev_ctx.SetBlob(key_batch_norm_diff_dst_mem_p, diff_dst_memory);

      // set layout/format of output tensors
      diff_x->set_layout(DataLayout::kMKLDNN);
      diff_x->set_format((memory::format)diff_src_memory->get_primitive_desc()
                             .desc()
                             .data.format);
    } else {
      // primitives already exist
      UpdateMemoryData(dev_ctx, key_batch_norm_src_mem_p, to_void_cast(x_data));
      UpdateMemoryData(dev_ctx, key_batch_norm_mean_mem_p,
                       to_void_cast(batch_mean_data));
      UpdateMemoryData(dev_ctx, key_batch_norm_variance_mem_p,
                       to_void_cast(batch_variance_data));
      UpdateMemoryData(dev_ctx, key_batch_norm_scaleshift_mem_p,
                       scaleshift_data.data());
      UpdateMemoryData(dev_ctx, key_batch_norm_diff_scaleshift_mem_p,
                       diff_scaleshift_data.data());
      auto diff_src_memory = UpdateMemoryData(
          dev_ctx, key_batch_norm_diff_src_mem_p, to_void_cast(diff_x_data));
      auto diff_dst_memory = UpdateMemoryData(
          dev_ctx, key_batch_norm_diff_dst_mem_p, to_void_cast(diff_y_data));

      // reorder user_diff_dst if it's not in preferred format
      if (diff_dst_memory->get_primitive_desc() !=
          user_diff_dst_memory.get_primitive_desc()) {
        reorder_diff_dst = reorder(user_diff_dst_memory, *diff_dst_memory);
        is_diff_dst_reordered = true;
      }

      // set layout/format of output tensors
      diff_x->set_layout(DataLayout::kMKLDNN);
      diff_x->set_format((memory::format)diff_src_memory->get_primitive_desc()
                             .desc()
                             .data.format);
    }
495 496 497 498

    // execute optional reorder and batch_norm backward primitive
    std::vector<primitive> pipeline;
    if (is_diff_dst_reordered) pipeline.push_back(reorder_diff_dst);
499
    pipeline.push_back(*batch_norm_bwd_p);
500 501 502 503
    stream(stream::kind::eager).submit(pipeline).wait();

    // copy back diff sacle/shift to output tensors (diff scale/shift)
    diff_scaleshift_data.resize(scaleshift_size);
504
    auto it = std::begin(diff_scaleshift_data);
505
    std::copy(it, std::next(it, ic), diff_scale_data);
506
    std::copy(std::next(it, ic), std::end(diff_scaleshift_data),
507
              diff_shift_data);
508 509 510 511 512 513
  }
};
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
514
REGISTER_OP_KERNEL(batch_norm, MKLDNN, ::paddle::platform::CPUPlace,
515
                   ops::BatchNormMKLDNNOpKernel<float>);
516
REGISTER_OP_KERNEL(batch_norm_grad, MKLDNN, ::paddle::platform::CPUPlace,
517
                   ops::BatchNormMKLDNNGradOpKernel<float>);