adam_op.cc 9.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

W
Wu Yi 已提交
15
#include "paddle/fluid/operators/optimizers/adam_op.h"
16 17 18 19

namespace paddle {
namespace operators {

D
dzhwinter 已提交
20
using Tensor = framework::Tensor;
21

22
void AdamOp::InferShape(framework::InferShapeContext *ctx) const {
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
  PADDLE_ENFORCE_EQ(
      ctx->HasInput("Param"), true,
      platform::errors::NotFound("Input(Param) of AdamOp should not be null."));
  PADDLE_ENFORCE_EQ(
      ctx->HasInput("Grad"), true,
      platform::errors::NotFound("Input(Grad) of AdamOp should not be null."));
  PADDLE_ENFORCE_EQ(ctx->HasInput("Moment1"), true,
                    platform::errors::NotFound(
                        "Input(Moment1) of AdamOp should not be null."));
  PADDLE_ENFORCE_EQ(ctx->HasInput("Moment2"), true,
                    platform::errors::NotFound(
                        "Input(Moment2) of AdamOp should not be null."));
  PADDLE_ENFORCE_EQ(ctx->HasInput("LearningRate"), true,
                    platform::errors::NotFound(
                        "Input(LearningRate) of AdamOp should not be null."));
  PADDLE_ENFORCE_EQ(ctx->HasInput("Beta1Pow"), true,
                    platform::errors::NotFound(
                        "Input(Beta1Pow) of AdamOp should not be null."));
  PADDLE_ENFORCE_EQ(ctx->HasInput("Beta2Pow"), true,
                    platform::errors::NotFound(
                        "Input(Beta2Pow) of AdamOp should not be null."));

  if (ctx->IsRuntime() && ctx->HasInput("Beta1Tensor")) {
    auto beta1 = ctx->Inputs("Beta1Tensor");
    PADDLE_ENFORCE_EQ(
        beta1.size(), 1,
        platform::errors::InvalidArgument("Input(Beta1Tensor) size must be 1"));
  }
  if (ctx->IsRuntime() && ctx->HasInput("Beta2Tensor")) {
    auto beta2 = ctx->Inputs("Beta2Tensor");
    PADDLE_ENFORCE_EQ(
        beta2.size(), 1,
        platform::errors::InvalidArgument("Input(Beta2Tensor) size must be 1"));
  }

  PADDLE_ENFORCE_EQ(ctx->HasOutput("ParamOut"), true,
                    platform::errors::NotFound(
                        "Output(ParamOut) of AdamOp should not be null."));
  PADDLE_ENFORCE_EQ(ctx->HasOutput("Moment1Out"), true,
                    platform::errors::NotFound(
                        "Output(Moment1Out) of AdamOp should not be null."));
  PADDLE_ENFORCE_EQ(ctx->HasOutput("Moment2Out"), true,
                    platform::errors::NotFound(
                        "Output(Moment2Out) of AdamOp should not be null."));
67

Y
Yibing Liu 已提交
68
  auto lr_dims = ctx->GetInputDim("LearningRate");
A
Aurelius84 已提交
69 70 71 72 73 74 75 76 77 78 79 80 81 82
  PADDLE_ENFORCE_NE(
      framework::product(lr_dims), 0,
      platform::errors::InvalidArgument(
          "The number of LearningRate shall not be 0, but received %d. Maybe "
          "the Input variable LearningRate has not "
          "been initialized. You may need to confirm "
          "if you put exe.run(startup_program) "
          "after optimizer.minimize function.",
          framework::product(lr_dims)));
  PADDLE_ENFORCE_EQ(
      framework::product(lr_dims), 1,
      platform::errors::InvalidArgument(
          "Learning rate should have 1 dimension, but received %d",
          framework::product(lr_dims)));
Y
Yibing Liu 已提交
83
  auto beta1_pow_dims = ctx->GetInputDim("Beta1Pow");
A
Aurelius84 已提交
84 85 86 87 88 89
  VLOG(3) << "dims of Beta1Pow : [" << beta1_pow_dims << "]";
  PADDLE_ENFORCE_GE(framework::product(beta1_pow_dims), 1,
                    platform::errors::InvalidArgument(
                        "The size of Beta1 power accumulator should be greater "
                        "than 0, but received %d.",
                        framework::product(beta1_pow_dims)));
Y
Yibing Liu 已提交
90
  auto beta2_pow_dims = ctx->GetInputDim("Beta2Pow");
A
Aurelius84 已提交
91 92 93 94 95 96
  VLOG(3) << "dims of Beta2Pow : [" << beta2_pow_dims << "]";
  PADDLE_ENFORCE_GE(framework::product(beta2_pow_dims), 1,
                    platform::errors::InvalidArgument(
                        "The size of Beta2 power accumulator should be greater "
                        "than 0, but received %d.",
                        framework::product(beta2_pow_dims)));
97

Y
Yibing Liu 已提交
98 99 100
  auto param_dims = ctx->GetInputDim("Param");
  if (ctx->GetInputsVarType("Grad")[0] ==
      framework::proto::VarType::LOD_TENSOR) {
101
    PADDLE_ENFORCE_EQ(
Y
Yibing Liu 已提交
102
        param_dims, ctx->GetInputDim("Grad"),
A
Aurelius84 已提交
103 104 105 106
        platform::errors::InvalidArgument(
            "Param and Grad input of AdamOp should have same dimension. But "
            "received Param dims: [%s], Grad dims: [%s].",
            param_dims, ctx->GetInputDim("Grad")));
107
  }
Y
Yibing Liu 已提交
108 109
  PADDLE_ENFORCE_EQ(
      param_dims, ctx->GetInputDim("Moment1"),
A
Aurelius84 已提交
110 111 112 113
      platform::errors::InvalidArgument(
          "Param and Moment1 input of AdamOp should have same dimension. But "
          "received Param dims: [%s], Moment1 dims: [%s].",
          param_dims, ctx->GetInputDim("Moment1")));
Y
Yibing Liu 已提交
114 115
  PADDLE_ENFORCE_EQ(
      param_dims, ctx->GetInputDim("Moment2"),
A
Aurelius84 已提交
116 117 118 119
      platform::errors::InvalidArgument(
          "Param and Moment2 input of AdamOp should have same dimension. But "
          "received Param dims: [%s], Moment2 dims: [%s].",
          param_dims, ctx->GetInputDim("Moment2")));
Y
Yibing Liu 已提交
120 121 122 123

  ctx->SetOutputDim("ParamOut", param_dims);
  ctx->SetOutputDim("Moment1Out", param_dims);
  ctx->SetOutputDim("Moment2Out", param_dims);
A
Aurelius84 已提交
124 125
  ctx->SetOutputDim("Beta1PowOut", beta1_pow_dims);
  ctx->SetOutputDim("Beta2PowOut", beta2_pow_dims);
Y
Yibing Liu 已提交
126 127 128
}

framework::OpKernelType AdamOp::GetExpectedKernelType(
129
    const framework::ExecutionContext &ctx) const {
130
  auto input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "Param");
Y
Yibing Liu 已提交
131 132
  return framework::OpKernelType(input_data_type, ctx.GetPlace());
}
133

134 135 136 137 138 139 140 141 142 143 144
framework::OpKernelType AdamOp::GetKernelTypeForVar(
    const std::string &var_name, const framework::Tensor &tensor,
    const framework::OpKernelType &expected_kernel_type) const {
  if (var_name == "Beta1Pow" || var_name == "Beta2Pow") {
    return expected_kernel_type;
  } else {
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
  }
}

145 146
class AdamOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
147
  void Make() override {
148 149 150 151 152 153 154 155
    AddInput("Param", "(Tensor) Input parameter");
    AddInput("Grad", "(Tensor) Input gradient");
    AddInput("LearningRate", "(Tensor) Learning rate");
    AddInput("Moment1", "(Tensor) Input first moment");
    AddInput("Moment2", "(Tensor) Input second moment");
    AddInput("Beta1Pow", "(Tensor) Input beta1 power accumulator");
    AddInput("Beta2Pow", "(Tensor) Input beta2 power accumulator");

156 157 158 159 160 161 162 163 164 165 166
    AddInput("Beta1Tensor",
             "(Tensor<float32>, optional) If provided, Adam will use this "
             "as beta1, this has a higher priority than attr(beta1), the "
             "shape of this tensor MUST BE [1].")
        .AsDispensable();
    AddInput("Beta2Tensor",
             "(Tensor<float32>, optional) If provided, Adam will use this "
             "as beta2, this has a higher priority than attr(beta2), the "
             "shape of this tensor MUST BE [1].")
        .AsDispensable();

167 168 169
    AddOutput("ParamOut", "(Tensor) Output parameter");
    AddOutput("Moment1Out", "(Tensor) Output first moment");
    AddOutput("Moment2Out", "(Tensor) Output second moment");
A
Aurelius84 已提交
170 171
    AddOutput("Beta1PowOut", "(Tensor) Output beta1 power accumulator");
    AddOutput("Beta2PowOut", "(Tensor) Output beta2 power accumulator");
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186

    AddAttr<float>("beta1",
                   "(float, default 0.9) "
                   "Exponential decay rate for the "
                   "first moment estimates.")
        .SetDefault(0.9f);
    AddAttr<float>("beta2",
                   "(float, default 0.999) "
                   "exponential decay rate for the "
                   "second moment estimates.")
        .SetDefault(0.999f);
    AddAttr<float>("epsilon",
                   "(float, default 1.0e-8) "
                   "Constant for numerical stability")
        .SetDefault(1.0e-8f);
Q
Qiao Longfei 已提交
187
    AddAttr<bool>(
Q
Qiao Longfei 已提交
188
        "lazy_mode",
Q
Qiao Longfei 已提交
189 190 191
        "(bool, default false) "
        "only update the parameter that has gradient in sparse update")
        .SetDefault(false);
192 193 194 195 196 197
    AddAttr<int64_t>("min_row_size_to_use_multithread",
                     "(int64_t, default 0) "
                     "when not zero, if param row size is larger then "
                     "min_row_size_to_use_multithread and "
                     "inner_op_parallelism is larger then 0, sparse update "
                     "will run in multithread mode")
198
        .SetDefault(1000);
199 200

    AddComment(R"DOC(
201
Adam Optimizer.
202 203

This implements the Adam optimizer from Section 2 of the Adam
204 205 206
paper : https://arxiv.org/abs/1412.6980.
Adam is a first-order gradient-based optimization method based on
adaptive estimates of lower-order moments.
207 208 209

Adam updates:

210 211 212 213 214 215 216
$$
moment\_1\_out = \beta_1 * moment\_1 + (1 - \beta_1) * grad \\
moment\_2_\out = \beta_2 * moment\_2 + (1 - \beta_2) * grad * grad \\
learning\_rate = learning\_rate *
                  \frac{\sqrt{1 - \beta_{2\_pow}}}{1 - \beta_{1\_pow}} \\
param\_out = param - learning\_rate * \frac{moment\_1}{\sqrt{moment\_2} + \epsilon}
$$
217 218 219 220 221 222 223 224 225

)DOC");
  }
};
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_WITHOUT_GRADIENT(adam, ops::AdamOp, ops::AdamOpMaker);
Q
QI JUN 已提交
226 227 228
REGISTER_OP_CPU_KERNEL(
    adam, ops::AdamOpKernel<paddle::platform::CPUDeviceContext, float>,
    ops::AdamOpKernel<paddle::platform::CPUDeviceContext, double>);