conv_miopen_helper.h 11.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <algorithm>
#include <array>
#include <memory>
#include <string>
#include <vector>

#include "paddle/fluid/framework/conv_search_cache.h"
#include "paddle/fluid/framework/operator_kernel_configs.h"
#include "paddle/fluid/operators/conv_cudnn_op_cache.h"
#include "paddle/fluid/platform/miopen_desc.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using DataLayout = platform::DataLayout;
template <typename T>
using ScalingParamType = typename platform::CudnnDataType<T>::ScalingParamType;
using framework::AlgorithmsCache;
static inline void GetNCDHW(const framework::DDim& dims,
                            const DataLayout& layout, int* N, int* C, int* D,
                            int* H, int* W) {
  *N = dims[0];
  *C = layout == DataLayout::kNCHW ? dims[1] : dims[dims.size() - 1];
  int i = layout == DataLayout::kNCHW ? 0 : 1;
  if (dims.size() == 5) {
    *D = dims[2 - i];
    *H = dims[3 - i];
    *W = dims[4 - i];
  } else {
    *D = 1;
    *H = dims[2 - i];
    *W = dims[3 - i];
  }
}

template <typename DeviceContext, typename T, size_t D>
static void RemovePaddingSlice(const framework::ExecutionContext& context,
                               const Tensor* input, Tensor* out,
                               const std::vector<int>& starts,
                               const std::vector<int>& axes) {
  auto& place =
      *context.template device_context<DeviceContext>().eigen_device();
  auto in_dims = input->dims();
  auto new_out_dims = out->dims();
  auto offsets = Eigen::array<int, D>();
  auto extents = Eigen::array<int, D>();
  for (size_t i = 0; i < D; ++i) {
    offsets[i] = 0;
    extents[i] = new_out_dims[i];
  }

  int start;
  for (size_t i = 0; i < axes.size(); ++i) {
    start = starts[i];
    if (start < 0) {
      start = (start + in_dims[axes[i]]);
    }
    start = std::max(start, 0);
    offsets[axes[i]] = start;
  }
  auto in_t =
      framework::EigenTensor<T, D, Eigen::RowMajor, Eigen::DenseIndex>::From(
          *input);

  auto out_t =
      framework::EigenTensor<T, D, Eigen::RowMajor, Eigen::DenseIndex>::From(
          *out, new_out_dims);
  out_t.device(place) = in_t.slice(offsets, extents);
}

template <typename T>
std::ostream& operator<<(std::ostream& out, const std::vector<T>& v) {
  out << "[";
  for (auto const& tmp : v) out << tmp << ",";
  out << "]";
  return out;
}

using framework::ConvSearchCache;

struct ConvArgs {
  miopenHandle_t handle;
  platform::TensorDescriptor idesc, odesc;
  platform::FilterDescriptor wdesc;
  platform::ConvolutionDescriptor cdesc;
  const framework::Tensor *x, *w, *o;
  miopenDataType_t cudnn_dtype;

  // strides
  std::vector<int> s;
  // paddings
  std::vector<int> p;
  // dilations
  std::vector<int> d;

  ConvArgs(const framework::Tensor* x, const framework::Tensor* w,
           const framework::Tensor* o, const std::vector<int> s,
           const std::vector<int> p, const std::vector<int> d,
           miopenDataType_t dtype)
      : x(x), w(w), o(o), s(s), p(p), d(d), cudnn_dtype(dtype) {}
};

template <typename algo_t>
struct SearchAlgorithm {};

template <>
struct SearchAlgorithm<miopenConvFwdAlgorithm_t> {
  using perf_t = miopenConvAlgoPerf_t;
  using algo_t = miopenConvFwdAlgorithm_t;

  template <typename T>
  static algo_t Find(const ConvArgs& args, bool exhaustive_search,
                     bool deterministic,
                     const framework::ExecutionContext& ctx) {
    auto dtype = platform::CudnnDataType<T>::type;
    bool has_got_workspace_size = true;
    size_t workspace_size_limit = FLAGS_conv_workspace_size_limit * 1024 * 1024;
    size_t workspace_size = 0;
    algo_t algo;

    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    auto workspace_handle = dev_ctx.cudnn_workspace_handle();

    auto& temp = ctx.cuda_device_context();
    AlgorithmsCache<algo_t>& algo_cache =
        *(framework::ConvSearchCache::Instance().GetForward());

    auto x_dims = framework::vectorize(args.x->dims());
    auto w_dims = framework::vectorize(args.w->dims());

    VLOG(10) << "miopenConvolutionFwdAlgoPerf_t:"
             << ", x_dims:" << x_dims << ", w_dims:" << w_dims << ", args.s"
             << args.s << ", args.p" << args.p << ", args.d" << args.d;

    algo = algo_cache.GetAlgorithm(
        x_dims, w_dims, args.s, args.p, args.d, 0,
        static_cast<int64_t>(args.cudnn_dtype), [&]() {
          int returned_algo_count;
          std::array<perf_t, kNUM_CUDNN_FWD_ALGS> perf_stat;

          auto cudnn_find_func = [&](void* cudnn_workspace_ptr) {
            PADDLE_ENFORCE_CUDA_SUCCESS(
                platform::dynload::miopenFindConvolutionForwardAlgorithm(
                    args.handle, args.idesc.desc(), args.x->data<T>(),
                    args.wdesc.desc(), args.w->data<T>(), args.cdesc.desc(),
                    args.odesc.desc(), const_cast<T*>(args.o->data<T>()),
                    kNUM_CUDNN_FWD_ALGS, &returned_algo_count, perf_stat.data(),
                    cudnn_workspace_ptr, workspace_size_limit, false));
          };
          workspace_handle.RunFuncSync(cudnn_find_func, workspace_size_limit);

          VLOG(3) << "FwdAlgo Perf result: (algo: stat, time, memory)";
          for (int i = 0; i < returned_algo_count; ++i) {
            const auto& stat = perf_stat[i];
            VLOG(3) << stat.fwd_algo;
          }
          return perf_stat[0].fwd_algo;
        });
    VLOG(3) << "choose algo " << algo;
    return algo;
  }

  static size_t GetWorkspaceSize(const ConvArgs& args, algo_t algo) {
    size_t workspace_size = 0;
    PADDLE_ENFORCE_CUDA_SUCCESS(
        platform::dynload::miopenConvolutionForwardGetWorkSpaceSize(
            args.handle, args.wdesc.desc(), args.idesc.desc(),
            args.cdesc.desc(), args.odesc.desc(), &workspace_size));
    return workspace_size;
  }
};

template <>
struct SearchAlgorithm<miopenConvBwdDataAlgorithm_t> {
  using perf_t = miopenConvAlgoPerf_t;
  using algo_t = miopenConvBwdDataAlgorithm_t;

  template <typename T>
  static algo_t Find(const ConvArgs& args, bool exhaustive_search,
                     bool deterministic,
                     const framework::ExecutionContext& ctx) {
    auto dtype = platform::CudnnDataType<T>::type;
    size_t workspace_size_limit = FLAGS_conv_workspace_size_limit * 1024 * 1024;
    size_t workspace_size = 0;
    bool has_got_workspace_size = true;
    algo_t algo;

    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    auto workspace_handle = dev_ctx.cudnn_workspace_handle();

    AlgorithmsCache<algo_t>& algo_cache =
        *(framework::ConvSearchCache::Instance().GetBackwardData());

    auto x_dims = framework::vectorize(args.x->dims());
    auto w_dims = framework::vectorize(args.w->dims());

    VLOG(10) << "miopenConvolutionFwdAlgoPerf_t"
             << ", x_dims:" << x_dims << ", w_dims:" << w_dims << ", args.s"
             << args.s << ", args.p" << args.p << ", args.d" << args.d;

    algo = algo_cache.GetAlgorithm(
        x_dims, w_dims, args.s, args.p, args.d, 0,
        static_cast<int64_t>(args.cudnn_dtype), [&]() {
          int returned_algo_count;
          std::array<perf_t, kNUM_CUDNN_FWD_ALGS> perf_stat;

          auto cudnn_find_func = [&](void* cudnn_workspace_ptr) {
            PADDLE_ENFORCE_CUDA_SUCCESS(
                platform::dynload::miopenFindConvolutionBackwardDataAlgorithm(
                    args.handle, args.odesc.desc(), args.o->data<T>(),
                    args.wdesc.desc(), args.w->data<T>(), args.cdesc.desc(),
                    args.idesc.desc(), const_cast<T*>(args.x->data<T>()),
                    kNUM_CUDNN_BWD_DATA_ALGS, &returned_algo_count,
                    perf_stat.data(), cudnn_workspace_ptr, workspace_size_limit,
                    false));
          };
          workspace_handle.RunFuncSync(cudnn_find_func, workspace_size_limit);

          VLOG(3) << "BwdDataAlgo Perf result: (algo: stat, time, memory)";
          for (int i = 0; i < returned_algo_count; ++i) {
            const auto& stat = perf_stat[i];
            VLOG(3) << stat.bwd_data_algo;
          }

          return perf_stat[0].bwd_data_algo;
        });
    VLOG(3) << "choose algo " << algo;
    return algo;
  }

  static size_t GetWorkspaceSize(const ConvArgs& args, algo_t algo) {
    size_t workspace_size = 0;
    PADDLE_ENFORCE_CUDA_SUCCESS(
        platform::dynload::miopenConvolutionBackwardDataGetWorkSpaceSize(
            args.handle, args.odesc.desc(), args.wdesc.desc(),
            args.cdesc.desc(), args.idesc.desc(), &workspace_size));
    return workspace_size;
  }
};

template <>
struct SearchAlgorithm<miopenConvBwdWeightsAlgorithm_t> {
  using perf_t = miopenConvAlgoPerf_t;
  using algo_t = miopenConvBwdWeightsAlgorithm_t;

  template <typename T>
  static algo_t Find(const ConvArgs& args, bool exhaustive_search,
                     bool deterministic,
                     const framework::ExecutionContext& ctx) {
    auto dtype = platform::CudnnDataType<T>::type;
    size_t workspace_size_limit = FLAGS_conv_workspace_size_limit * 1024 * 1024;
    size_t workspace_size = 0;
    bool has_got_workspace_size = true;
    algo_t algo;

    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    auto workspace_handle = dev_ctx.cudnn_workspace_handle();
    AlgorithmsCache<algo_t>& algo_cache =
        *(framework::ConvSearchCache::Instance().GetBackwardFilter());

    auto x_dims = framework::vectorize(args.x->dims());
    auto w_dims = framework::vectorize(args.w->dims());

    VLOG(10) << "miopenConvolutionFwdAlgoPerf_t:"
             << ", x_dims:" << x_dims << ", w_dims:" << w_dims << ", args.s"
             << args.s << ", args.p" << args.p << ", args.d" << args.d;

    algo = algo_cache.GetAlgorithm(
        x_dims, w_dims, args.s, args.p, args.d, 0,
        static_cast<int64_t>(args.cudnn_dtype), [&]() {
          int returned_algo_count;
          std::array<perf_t, kNUM_CUDNN_FWD_ALGS> perf_stat;
          auto cudnn_find_func = [&](void* cudnn_workspace_ptr) {
            PADDLE_ENFORCE_CUDA_SUCCESS(
                platform::dynload::
                    miopenFindConvolutionBackwardWeightsAlgorithm(
                        args.handle, args.odesc.desc(), args.o->data<T>(),
                        args.idesc.desc(), args.x->data<T>(), args.cdesc.desc(),
                        args.wdesc.desc(), const_cast<T*>(args.w->data<T>()),
                        kNUM_CUDNN_BWD_FILTER_ALGS, &returned_algo_count,
                        perf_stat.data(), cudnn_workspace_ptr,
                        workspace_size_limit, false));
          };
          workspace_handle.RunFuncSync(cudnn_find_func, workspace_size_limit);

          VLOG(3) << "BwdFilterAlgo Perf result: (algo: stat, time, memory)";
          for (int i = 0; i < returned_algo_count; ++i) {
            const auto& stat = perf_stat[i];
            VLOG(3) << stat.bwd_weights_algo;
          }
          return perf_stat[0].bwd_weights_algo;
        });
    VLOG(3) << "choose algo " << algo;
    return algo;
  }

  static size_t GetWorkspaceSize(const ConvArgs& args, algo_t algo) {
    size_t workspace_size = 0;
    PADDLE_ENFORCE_CUDA_SUCCESS(
        platform::dynload::miopenConvolutionBackwardWeightsGetWorkSpaceSize(
            args.handle, args.odesc.desc(), args.idesc.desc(),
            args.cdesc.desc(), args.wdesc.desc(), &workspace_size));
    return workspace_size;
  }
};

}  // namespace operators
}  // namespace paddle