ps_gpu_wrapper.h 9.7 KB
Newer Older
T
Thunderbrook 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

  http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

17 18
#if (defined PADDLE_WITH_NCCL || defined PADDLE_WITH_RCCL) && \
    (defined PADDLE_WITH_PSLIB)
T
Thunderbrook 已提交
19 20 21 22 23 24 25 26

#include <atomic>
#include <ctime>
#include <map>
#include <memory>
#include <random>
#include <string>
#include <unordered_map>
Y
yaoxuefeng 已提交
27
#include <unordered_set>
T
Thunderbrook 已提交
28 29
#include <vector>

30 31 32 33
#ifdef PADDLE_WITH_GLOO
#include <gloo/broadcast.h>
#include "paddle/fluid/framework/fleet/gloo_wrapper.h"
#endif
Y
yaoxuefeng 已提交
34
#include "paddle/fluid/framework/data_set.h"
T
Thunderbrook 已提交
35 36 37 38 39 40
#include "paddle/fluid/framework/fleet/heter_context.h"
#include "paddle/fluid/framework/fleet/heter_ps/heter_ps_base.h"
#include "paddle/fluid/framework/fleet/heter_ps/heter_resource.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/framework/variable_helper.h"
41
#include "paddle/fluid/platform/dynload/nccl.h"
T
Thunderbrook 已提交
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
#include "paddle/fluid/platform/gpu_info.h"
#include "paddle/fluid/platform/macros.h"  // for DISABLE_COPY_AND_ASSIGN
#include "paddle/fluid/platform/place.h"

namespace paddle {
namespace framework {

class PSGPUWrapper {
 public:
  virtual ~PSGPUWrapper() { delete HeterPs_; }

  PSGPUWrapper() {
    HeterPs_ = NULL;
    sleep_seconds_before_fail_exit_ = 300;
  }

  void PullSparse(const paddle::platform::Place& place, const int table_id,
                  const std::vector<const uint64_t*>& keys,
                  const std::vector<float*>& values,
                  const std::vector<int64_t>& slot_lengths,
                  const int hidden_size);
  void PushSparseGrad(const paddle::platform::Place& place, const int table_id,
                      const std::vector<const uint64_t*>& keys,
                      const std::vector<const float*>& grad_values,
                      const std::vector<int64_t>& slot_lengths,
                      const int hidden_size, const int batch_size);
  void CopyKeys(const paddle::platform::Place& place, uint64_t** origin_keys,
                uint64_t* total_keys, const int64_t* gpu_len, int slot_num,
                int total_len);
  void CopyForPull(const paddle::platform::Place& place, uint64_t** gpu_keys,
                   const std::vector<float*>& values,
                   const FeatureValue* total_values_gpu, const int64_t* gpu_len,
                   const int slot_num, const int hidden_size,
                   const int64_t total_length);

  void CopyForPush(const paddle::platform::Place& place,
                   const std::vector<const float*>& grad_values,
                   FeaturePushValue* total_grad_values_gpu,
                   const std::vector<int64_t>& slot_lengths,
                   const int hidden_size, const int64_t total_length,
                   const int batch_size);

Y
yaoxuefeng 已提交
84
  void BuildGPUPS(const uint64_t table_id, int feature_dim);
85 86
  void BuildTask(std::shared_ptr<HeterContext> gpu_task, uint64_t table_id,
                 int feature_dim);
T
Thunderbrook 已提交
87
  void InitializeGPU(const std::vector<int>& dev_ids) {
88
    if (s_instance_ != NULL && is_initialized_ == false) {
T
Thunderbrook 已提交
89
      VLOG(3) << "PSGPUWrapper Begin InitializeGPU";
90
      is_initialized_ = true;
T
Thunderbrook 已提交
91 92 93
      resource_ = std::make_shared<HeterPsResource>(dev_ids);
      resource_->enable_p2p();
      keys_tensor.resize(resource_->total_gpu());
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
      if (multi_node_) {
        int dev_size = dev_ids.size();
        // init inner comm
        inner_comms_.resize(dev_size);
        inter_ncclids_.resize(dev_size);
        platform::dynload::ncclCommInitAll(&(inner_comms_[0]), dev_size,
                                           &dev_ids[0]);
// init inter comm
#ifdef PADDLE_WITH_GLOO
        inter_comms_.resize(dev_size);
        auto gloo = paddle::framework::GlooWrapper::GetInstance();
        if (gloo->Rank() == 0) {
          for (int i = 0; i < dev_size; ++i) {
            platform::dynload::ncclGetUniqueId(&inter_ncclids_[i]);
          }
        }

        PADDLE_ENFORCE_EQ(
            gloo->IsInitialized(), true,
            platform::errors::PreconditionNotMet(
                "You must initialize the gloo environment first to use it."));
        gloo::BroadcastOptions opts(gloo->GetContext());
        opts.setOutput(&inter_ncclids_[0], dev_size);
        opts.setRoot(0);
        gloo::broadcast(opts);

        for (int i = 0; i < dev_size; ++i) {
          platform::dynload::ncclCommInitRank(&inter_comms_[i], gloo->Size(),
                                              inter_ncclids_[i], gloo->Rank());
        }
        node_size_ = gloo->Size();
#else
        PADDLE_THROW(
            platform::errors::Unavailable("heter ps need compile with GLOO"));
#endif
      }
Y
yaoxuefeng 已提交
130
      heter_devices_ = dev_ids;
T
Thunderbrook 已提交
131 132
    }
  }
Y
yaoxuefeng 已提交
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192

  void SetSparseSGD(float nonclk_coeff, float clk_coeff, float min_bound,
                    float max_bound, float learning_rate, float initial_g2sum,
                    float initial_range);
  void SetEmbedxSGD(float mf_create_thresholds, float mf_learning_rate,
                    float mf_initial_g2sum, float mf_initial_range,
                    float mf_min_bound, float mf_max_bound);
  void InitializeGPUServer(std::unordered_map<std::string, float> config) {
    float nonclk_coeff = (config.find("nonclk_coeff") == config.end())
                             ? 1.0
                             : config["nonclk_coeff"];
    float clk_coeff =
        (config.find("clk_coeff") == config.end()) ? 1.0 : config["clk_coeff"];
    float min_bound = (config.find("min_bound") == config.end())
                          ? -10000.0
                          : config["min_bound"];
    float max_bound = (config.find("max_bound") == config.end())
                          ? 10000.0
                          : config["max_bound"];
    float learning_rate = (config.find("learning_rate") == config.end())
                              ? 1.0
                              : config["learning_rate"];
    float initial_g2sum = (config.find("initial_g2sum") == config.end())
                              ? 1.0
                              : config["initial_g2sum"];
    float initial_range = (config.find("initial_range") == config.end())
                              ? 1.0
                              : config["initial_range"];

    // mf config settings
    float mf_create_thresholds =
        (config.find("mf_create_thresholds") == config.end())
            ? static_cast<float>(1.0)
            : config["mf_create_thresholds"];
    float mf_learning_rate = (config.find("mf_learning_rate") == config.end())
                                 ? 1.0
                                 : config["mf_learning_rate"];
    float mf_initial_g2sum = (config.find("mf_initial_g2sum") == config.end())
                                 ? 1.0
                                 : config["mf_initial_g2sum"];
    float mf_initial_range = (config.find("mf_initial_range") == config.end())
                                 ? 1.0
                                 : config["mf_initial_range"];
    float mf_min_bound = (config.find("mf_min_bound") == config.end())
                             ? 1.0
                             : config["mf_min_bound"];
    float mf_max_bound = (config.find("mf_max_bound") == config.end())
                             ? 1.0
                             : config["mf_max_bound"];
    for (size_t i = 0; i < heter_devices_.size(); i++) {
      PADDLE_ENFORCE_CUDA_SUCCESS(cudaSetDevice(heter_devices_[i]));
      this->SetSparseSGD(nonclk_coeff, clk_coeff, min_bound, max_bound,
                         learning_rate, initial_g2sum, initial_range);
      this->SetEmbedxSGD(mf_create_thresholds, mf_learning_rate,
                         mf_initial_g2sum, mf_initial_range, mf_min_bound,
                         mf_max_bound);
    }
  }
  void SetDataset(Dataset* dataset) { dataset_ = dataset; }

T
Thunderbrook 已提交
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
  // PSGPUWrapper singleton
  static std::shared_ptr<PSGPUWrapper> GetInstance() {
    if (NULL == s_instance_) {
      s_instance_.reset(new paddle::framework::PSGPUWrapper());
    }
    return s_instance_;
  }
  std::vector<std::unordered_map<uint64_t, std::vector<float>>>& GetLocalTable(
      int table_id) {
    return local_tables_[table_id];
  }
  void SetSlotVector(const std::vector<int>& slot_vector) {
    slot_vector_ = slot_vector;
  }

T
Thunderbrook 已提交
208 209 210
  void EndPass() { HeterPs_->end_pass(); }
  void ShowOneTable(int index) { HeterPs_->show_one_table(index); }

T
Thunderbrook 已提交
211 212
 private:
  static std::shared_ptr<PSGPUWrapper> s_instance_;
Y
yaoxuefeng 已提交
213
  Dataset* dataset_;
T
Thunderbrook 已提交
214 215 216 217 218 219 220 221
  std::unordered_map<
      uint64_t, std::vector<std::unordered_map<uint64_t, std::vector<float>>>>
      local_tables_;
  HeterPsBase* HeterPs_;
  std::vector<LoDTensor> keys_tensor;  // Cache for pull_sparse
  std::shared_ptr<HeterPsResource> resource_;
  int32_t sleep_seconds_before_fail_exit_;
  std::vector<int> slot_vector_;
222 223 224 225 226
  int multi_node_{1};
  int node_size_;
  std::vector<ncclComm_t> inner_comms_;
  std::vector<ncclComm_t> inter_comms_;
  std::vector<ncclUniqueId> inter_ncclids_;
Y
yaoxuefeng 已提交
227 228 229 230 231 232 233
  std::vector<int> heter_devices_;
  std::unordered_set<std::string> gpu_ps_config_keys_;
  HeterObjectPool<HeterContext> gpu_task_pool_;
  std::vector<std::vector<std::vector<uint64_t>>> thread_keys_;
  int thread_keys_thread_num_ = 37;
  int thread_keys_shard_num_ = 37;
  uint64_t max_fea_num_per_pass_ = 5000000000;
T
Thunderbrook 已提交
234 235 236 237 238 239 240 241

 protected:
  static bool is_initialized_;
};

}  // end namespace framework
}  // end namespace paddle
#endif