use_eigen_en.html 31.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86


<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
  <meta charset="utf-8">
  
  <meta name="viewport" content="width=device-width, initial-scale=1.0">
  
  <title>How to use Eigen in Paddle &mdash; PaddlePaddle  documentation</title>
  

  
  

  

  
  
    

  

  
  
    <link rel="stylesheet" href="../../_static/css/theme.css" type="text/css" />
  

  
  
        <link rel="index" title="Index"
              href="../../genindex.html"/>
        <link rel="search" title="Search" href="../../search.html"/>
    <link rel="top" title="PaddlePaddle  documentation" href="../../index.html"/> 

  <link rel="stylesheet" href="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/css/perfect-scrollbar.min.css" type="text/css" />
  <link rel="stylesheet" href="../../_static/css/override.css" type="text/css" />
  <script>
  var _hmt = _hmt || [];
  (function() {
    var hm = document.createElement("script");
    hm.src = "//hm.baidu.com/hm.js?b9a314ab40d04d805655aab1deee08ba";
    var s = document.getElementsByTagName("script")[0]; 
    s.parentNode.insertBefore(hm, s);
  })();
  </script>

  

  
  <script src="../../_static/js/modernizr.min.js"></script>

</head>

<body class="wy-body-for-nav" role="document">

  
  <header class="site-header">
    <div class="site-logo">
      <a href="/"><img src="../../_static/images/PP_w.png"></a>
    </div>
    <div class="site-nav-links">
      <div class="site-menu">
        <a class="fork-on-github" href="https://github.com/PaddlePaddle/Paddle" target="_blank"><i class="fa fa-github"></i>Fork me on Github</a>
        <div class="language-switcher dropdown">
          <a type="button" data-toggle="dropdown">
            <span>English</span>
            <i class="fa fa-angle-up"></i>
            <i class="fa fa-angle-down"></i>
          </a>
          <ul class="dropdown-menu">
            <li><a href="/doc_cn">中文</a></li>
            <li><a href="/doc">English</a></li>
          </ul>
        </div>
        <ul class="site-page-links">
          <li><a href="/">Home</a></li>
        </ul>
      </div>
      <div class="doc-module">
        
        <ul>
<li class="toctree-l1"><a class="reference internal" href="../../getstarted/index_en.html">GET STARTED</a></li>
<li class="toctree-l1"><a class="reference internal" href="../index_en.html">HOW TO</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../api/index_en.html">API</a></li>
87
<li class="toctree-l1"><a class="reference internal" href="../../mobile/index_en.html">MOBILE</a></li>
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
</ul>

        
<div role="search">
  <form id="rtd-search-form" class="wy-form" action="../../search.html" method="get">
    <input type="text" name="q" placeholder="Search docs" />
    <input type="hidden" name="check_keywords" value="yes" />
    <input type="hidden" name="area" value="default" />
  </form>
</div>        
      </div>
    </div>
  </header>
  
  <div class="main-content-wrap">

    
    <nav class="doc-menu-vertical" role="navigation">
        
          
          <ul>
<li class="toctree-l1"><a class="reference internal" href="../../getstarted/index_en.html">GET STARTED</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../../getstarted/build_and_install/index_en.html">Install and Build</a><ul>
111 112
<li class="toctree-l3"><a class="reference internal" href="../../getstarted/build_and_install/pip_install_en.html">Install Using pip</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../getstarted/build_and_install/docker_install_en.html">Run in Docker Containers</a></li>
113
<li class="toctree-l3"><a class="reference internal" href="build_en.html">Build using Docker</a></li>
114
<li class="toctree-l3"><a class="reference internal" href="../../getstarted/build_and_install/build_from_source_en.html">Build from Sources</a></li>
115 116 117 118 119 120 121 122 123 124 125
</ul>
</li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../index_en.html">HOW TO</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../usage/cmd_parameter/index_en.html">Set Command-line Parameters</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../usage/cmd_parameter/use_case_en.html">Use Case</a></li>
<li class="toctree-l3"><a class="reference internal" href="../usage/cmd_parameter/arguments_en.html">Argument Outline</a></li>
<li class="toctree-l3"><a class="reference internal" href="../usage/cmd_parameter/detail_introduction_en.html">Detail Description</a></li>
</ul>
</li>
126 127 128 129 130 131 132
<li class="toctree-l2"><a class="reference internal" href="../usage/cluster/cluster_train_en.html">Distributed Training</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../usage/cluster/fabric_en.html">fabric</a></li>
<li class="toctree-l3"><a class="reference internal" href="../usage/cluster/openmpi_en.html">openmpi</a></li>
<li class="toctree-l3"><a class="reference internal" href="../usage/cluster/k8s_en.html">kubernetes</a></li>
<li class="toctree-l3"><a class="reference internal" href="../usage/cluster/k8s_aws_en.html">kubernetes on AWS</a></li>
</ul>
</li>
133
<li class="toctree-l2"><a class="reference internal" href="new_layer_en.html">Write New Layers</a></li>
134
<li class="toctree-l2"><a class="reference internal" href="contribute_to_paddle_en.html">Contribute Code</a></li>
135
<li class="toctree-l2"><a class="reference internal" href="write_docs_en.html">Contribute Documentation</a></li>
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
<li class="toctree-l2"><a class="reference internal" href="../deep_model/rnn/index_en.html">RNN Models</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../deep_model/rnn/rnn_config_en.html">RNN Configuration</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../optimization/gpu_profiling_en.html">Tune GPU Performance</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../api/index_en.html">API</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../../api/v2/model_configs.html">Model Configuration</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/activation.html">Activation</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/layer.html">Layers</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/evaluators.html">Evaluators</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/optimizer.html">Optimizer</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/pooling.html">Pooling</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/networks.html">Networks</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/attr.html">Parameter Attribute</a></li>
</ul>
</li>
154 155 156 157 158 159
<li class="toctree-l2"><a class="reference internal" href="../../api/v2/data.html">Data Reader Interface and DataSets</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/data/data_reader.html">Data Reader Interface</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/data/image.html">Image Interface</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/data/dataset.html">Dataset</a></li>
</ul>
</li>
160
<li class="toctree-l2"><a class="reference internal" href="../../api/v2/run_logic.html">Training and Inference</a></li>
161 162 163 164 165 166 167 168 169 170 171
<li class="toctree-l2"><a class="reference internal" href="../../api/v2/fluid.html">Fluid</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/fluid/layers.html">Layers</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/fluid/data_feeder.html">DataFeeder</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/fluid/executor.html">Executor</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/fluid/initializer.html">Initializer</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/fluid/evaluator.html">Evaluator</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/fluid/nets.html">Nets</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/fluid/optimizer.html">Optimizer</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/fluid/param_attr.html">ParamAttr</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/fluid/profiler.html">Profiler</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/fluid/regularizer.html">Regularizer</a></li>
172
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/fluid/io.html">IO</a></li>
173 174
</ul>
</li>
175 176
</ul>
</li>
177 178
<li class="toctree-l1"><a class="reference internal" href="../../mobile/index_en.html">MOBILE</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../../mobile/cross_compiling_for_android_en.html">Build PaddlePaddle for Android</a></li>
179
<li class="toctree-l2"><a class="reference internal" href="../../mobile/cross_compiling_for_ios_en.html">Build PaddlePaddle for iOS</a></li>
180 181 182
<li class="toctree-l2"><a class="reference internal" href="../../mobile/cross_compiling_for_raspberry_en.html">Build PaddlePaddle for Raspberry Pi</a></li>
</ul>
</li>
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
</ul>

        
    </nav>
    
    <section class="doc-content-wrap">

      

 







<div role="navigation" aria-label="breadcrumbs navigation">
  <ul class="wy-breadcrumbs">
      
    <li>How to use Eigen in Paddle</li>
  </ul>
</div>
      
      <div class="wy-nav-content" id="doc-content">
        <div class="rst-content">
          <div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
           <div itemprop="articleBody">
            
  <div class="section" id="how-to-use-eigen-in-paddle">
<span id="how-to-use-eigen-in-paddle"></span><h1>How to use Eigen in Paddle<a class="headerlink" href="#how-to-use-eigen-in-paddle" title="Permalink to this headline"></a></h1>
<p>Essentially, a neural network is a compute graph. T data needed for the computation is stored in <code class="docutils literal"><span class="pre">Tensor</span></code>s and its computation procedure is described by <code class="docutils literal"><span class="pre">Operator</span></code>s. An <code class="docutils literal"><span class="pre">Operator</span></code> calls the <code class="docutils literal"><span class="pre">Compute</span></code> interface in its corresponding <code class="docutils literal"><span class="pre">OpKernel</span></code> and operates on the <code class="docutils literal"><span class="pre">Tensor</span></code>.</p>
<div class="section" id="eigen-tensor-module">
<span id="eigen-tensor-module"></span><h2>Eigen Tensor Module<a class="headerlink" href="#eigen-tensor-module" title="Permalink to this headline"></a></h2>
<p>The Eigen Tensor module supports powerful element-wise computation. In addition, a piece of code written using it can be run on both the CPU and the GPU.</p>
<p>Note that Eigen Tensor is still being actively developed, so its tests are not completely covered and its documentation may be sparse.</p>
<p>For details on Eigen Tensor module, please see <a class="reference external" href="https://github.com/RLovelett/eigen/blob/master/unsupported/Eigen/CXX11/src/Tensor/README.md">doc 1</a> and <a class="reference external" href="https://bitbucket.org/eigen/eigen/src/default/unsupported/Eigen/CXX11/src/Tensor/README.md">doc 2</a>.</p>
</div>
<div class="section" id="paddle-framework-tensor">
<span id="paddle-framework-tensor"></span><h2>paddle::framework::Tensor<a class="headerlink" href="#paddle-framework-tensor" title="Permalink to this headline"></a></h2>
<p>Paddle Tensor&#8217;s is defined in the framework directory with the following interface:</p>
<div class="highlight-cpp"><div class="highlight"><pre><span></span><span class="k">class</span> <span class="nc">Tensor</span> <span class="p">{</span>
 <span class="k">public</span><span class="o">:</span>
  <span class="cm">/*! Return a pointer to mutable memory block. */</span>
  <span class="k">template</span> <span class="o">&lt;</span><span class="k">typename</span> <span class="n">T</span><span class="o">&gt;</span>
  <span class="kr">inline</span> <span class="n">T</span><span class="o">*</span> <span class="n">data</span><span class="p">();</span>

  <span class="cm">/**</span>
<span class="cm">   * @brief   Return a pointer to mutable memory block.</span>
<span class="cm">   * @note    If not exist, then allocation.</span>
<span class="cm">   */</span>
  <span class="k">template</span> <span class="o">&lt;</span><span class="k">typename</span> <span class="n">T</span><span class="o">&gt;</span>
  <span class="kr">inline</span> <span class="n">T</span><span class="o">*</span> <span class="n">mutable_data</span><span class="p">(</span><span class="n">platform</span><span class="o">::</span><span class="n">Place</span> <span class="n">place</span><span class="p">);</span>

  <span class="cm">/**</span>
<span class="cm">   * @brief     Return a pointer to mutable memory block.</span>
<span class="cm">   *</span>
<span class="cm">   * @param[in] dims    The dimensions of the memory block.</span>
<span class="cm">   * @param[in] place   The place of the memory block.</span>
<span class="cm">   *</span>
<span class="cm">   * @note      If not exist, then allocation.</span>
<span class="cm">   */</span>
  <span class="k">template</span> <span class="o">&lt;</span><span class="k">typename</span> <span class="n">T</span><span class="o">&gt;</span>
  <span class="kr">inline</span> <span class="n">T</span><span class="o">*</span> <span class="n">mutable_data</span><span class="p">(</span><span class="n">DDim</span> <span class="n">dims</span><span class="p">,</span> <span class="n">platform</span><span class="o">::</span><span class="n">Place</span> <span class="n">place</span><span class="p">);</span>

  <span class="cm">/*! Resize the dimensions of the memory block. */</span>
  <span class="kr">inline</span> <span class="n">Tensor</span><span class="o">&amp;</span> <span class="n">Resize</span><span class="p">(</span><span class="k">const</span> <span class="n">DDim</span><span class="o">&amp;</span> <span class="n">dims</span><span class="p">);</span>

  <span class="cm">/*! Return the dimensions of the memory block. */</span>
  <span class="kr">inline</span> <span class="k">const</span> <span class="n">DDim</span><span class="o">&amp;</span> <span class="n">dims</span><span class="p">()</span> <span class="k">const</span><span class="p">;</span>

 <span class="k">private</span><span class="o">:</span>
  <span class="cm">/*! holds the memory block if allocated. */</span>
  <span class="n">std</span><span class="o">::</span><span class="n">shared_ptr</span><span class="o">&lt;</span><span class="n">Placeholder</span><span class="o">&gt;</span> <span class="n">holder_</span><span class="p">;</span>

  <span class="cm">/*! points to dimensions of memory block. */</span>
  <span class="n">DDim</span> <span class="n">dim_</span><span class="p">;</span>
<span class="p">};</span>
</pre></div>
</div>
<p><code class="docutils literal"><span class="pre">Placeholder</span></code> is used to delay memory allocation; that is, we can first define a tensor, using <code class="docutils literal"><span class="pre">Resize</span></code> to configure its shape, and then call <code class="docutils literal"><span class="pre">mutuable_data</span></code> to allocate the actual memory.</p>
<div class="highlight-cpp"><div class="highlight"><pre><span></span><span class="n">paddle</span><span class="o">::</span><span class="n">framework</span><span class="o">::</span><span class="n">Tensor</span> <span class="n">t</span><span class="p">;</span>
<span class="n">paddle</span><span class="o">::</span><span class="n">platform</span><span class="o">::</span><span class="n">CPUPlace</span> <span class="n">place</span><span class="p">;</span>
<span class="c1">// set size first</span>
<span class="n">t</span><span class="p">.</span><span class="n">Resize</span><span class="p">({</span><span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">});</span>
<span class="c1">// allocate memory on CPU later</span>
<span class="n">t</span><span class="p">.</span><span class="n">mutable_data</span><span class="p">(</span><span class="n">place</span><span class="p">);</span>
</pre></div>
</div>
</div>
<div class="section" id="paddle-framework-tensor-usage">
<span id="paddle-framework-tensor-usage"></span><h2>paddle::framework::Tensor Usage<a class="headerlink" href="#paddle-framework-tensor-usage" title="Permalink to this headline"></a></h2>
<p><code class="docutils literal"><span class="pre">AddOp</span></code> demonstrates Tensor&#8217;s usage.</p>
<ul class="simple">
<li>InferShape</li>
</ul>
<p>When computing a neural network&#8217;s compute graph, first call every <code class="docutils literal"><span class="pre">Operator</span></code>&#8216;s <code class="docutils literal"><span class="pre">InferShape</span></code> method, and use <code class="docutils literal"><span class="pre">Resize</span></code> to configure the size of the output tensor.</p>
<div class="highlight-cpp"><div class="highlight"><pre><span></span><span class="kt">void</span> <span class="nf">InferShape</span><span class="p">(</span><span class="k">const</span> <span class="n">framework</span><span class="o">::</span><span class="n">InferShapeContext</span> <span class="o">&amp;</span><span class="n">ctx</span><span class="p">)</span> <span class="k">const</span> <span class="k">override</span> <span class="p">{</span>
  <span class="n">PADDLE_ENFORCE_EQ</span><span class="p">(</span><span class="n">ctx</span><span class="p">.</span><span class="n">Input</span><span class="o">&lt;</span><span class="n">Tensor</span><span class="o">&gt;</span><span class="p">(</span><span class="s">&quot;X&quot;</span><span class="p">)</span><span class="o">-&gt;</span><span class="n">dims</span><span class="p">(),</span>
                    <span class="n">ctx</span><span class="p">.</span><span class="n">Input</span><span class="o">&lt;</span><span class="n">Tensor</span><span class="o">&gt;</span><span class="p">(</span><span class="s">&quot;Y&quot;</span><span class="p">)</span><span class="o">-&gt;</span><span class="n">dims</span><span class="p">(),</span>
                    <span class="s">&quot;Two input of Add Op&#39;s dimension must be same.&quot;</span><span class="p">);</span>
  <span class="n">ctx</span><span class="p">.</span><span class="n">Output</span><span class="o">&lt;</span><span class="n">Tensor</span><span class="o">&gt;</span><span class="p">(</span><span class="s">&quot;Out&quot;</span><span class="p">)</span><span class="o">-&gt;</span><span class="n">Resize</span><span class="p">(</span><span class="n">ctx</span><span class="p">.</span><span class="n">Input</span><span class="o">&lt;</span><span class="n">Tensor</span><span class="o">&gt;</span><span class="p">(</span><span class="s">&quot;X&quot;</span><span class="p">)</span><span class="o">-&gt;</span><span class="n">dims</span><span class="p">());</span>
<span class="p">}</span>
</pre></div>
</div>
<ul class="simple">
<li>Run</li>
</ul>
<div class="highlight-cpp"><div class="highlight"><pre><span></span><span class="kt">void</span> <span class="nf">Compute</span><span class="p">(</span><span class="k">const</span> <span class="n">framework</span><span class="o">::</span><span class="n">ExecutionContext</span><span class="o">&amp;</span> <span class="n">context</span><span class="p">)</span> <span class="k">const</span> <span class="k">override</span> <span class="p">{</span>
  <span class="k">auto</span><span class="o">*</span> <span class="n">input0</span> <span class="o">=</span> <span class="n">context</span><span class="p">.</span><span class="n">Input</span><span class="o">&lt;</span><span class="n">Tensor</span><span class="o">&gt;</span><span class="p">(</span><span class="s">&quot;X&quot;</span><span class="p">);</span>
  <span class="k">auto</span><span class="o">*</span> <span class="n">input1</span> <span class="o">=</span> <span class="n">context</span><span class="p">.</span><span class="n">Input</span><span class="o">&lt;</span><span class="n">Tensor</span><span class="o">&gt;</span><span class="p">(</span><span class="s">&quot;Y&quot;</span><span class="p">);</span>
  <span class="k">auto</span><span class="o">*</span> <span class="n">output</span> <span class="o">=</span> <span class="n">context</span><span class="p">.</span><span class="n">Output</span><span class="o">&lt;</span><span class="n">Tensor</span><span class="o">&gt;</span><span class="p">(</span><span class="s">&quot;Out&quot;</span><span class="p">);</span>

  <span class="n">output</span><span class="o">-&gt;</span><span class="n">mutable_data</span><span class="o">&lt;</span><span class="n">T</span><span class="o">&gt;</span><span class="p">(</span><span class="n">context</span><span class="p">.</span><span class="n">GetPlace</span><span class="p">());</span>

  <span class="k">auto</span> <span class="n">x</span> <span class="o">=</span> <span class="n">EigenVector</span><span class="o">&lt;</span><span class="n">T</span><span class="o">&gt;::</span><span class="n">Flatten</span><span class="p">(</span><span class="o">*</span><span class="n">input0</span><span class="p">);</span>
  <span class="k">auto</span> <span class="n">y</span> <span class="o">=</span> <span class="n">EigenVector</span><span class="o">&lt;</span><span class="n">T</span><span class="o">&gt;::</span><span class="n">Flatten</span><span class="p">(</span><span class="o">*</span><span class="n">input1</span><span class="p">);</span>
  <span class="k">auto</span> <span class="n">z</span> <span class="o">=</span> <span class="n">EigenVector</span><span class="o">&lt;</span><span class="n">T</span><span class="o">&gt;::</span><span class="n">Flatten</span><span class="p">(</span><span class="o">*</span><span class="n">output</span><span class="p">);</span>

  <span class="k">auto</span> <span class="n">place</span> <span class="o">=</span> <span class="n">context</span><span class="p">.</span><span class="n">GetEigenDevice</span><span class="o">&lt;</span><span class="n">Place</span><span class="o">&gt;</span><span class="p">();</span>

  <span class="n">z</span><span class="p">.</span><span class="n">device</span><span class="p">(</span><span class="n">place</span><span class="p">)</span> <span class="o">=</span> <span class="n">x</span> <span class="o">+</span> <span class="n">y</span><span class="p">;</span>
<span class="p">}</span>
</pre></div>
</div>
</div>
<div class="section" id="paddle-framework-tensoreigentensor">
<span id="paddle-framework-tensoreigentensor"></span><h2>paddle::framework::Tensor到EigenTensor的转换<a class="headerlink" href="#paddle-framework-tensoreigentensor" title="Permalink to this headline"></a></h2>
<p>As shown above, in actual computation, we need to transform the input and output <code class="docutils literal"><span class="pre">Tensor</span></code>s into formats Eigen supports. We show some functions in <a class="reference external" href="https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/eigen.h">eigen.h</a> to implement the transformation from <code class="docutils literal"><span class="pre">paddle::framework::Tensor</span></code>to <code class="docutils literal"><span class="pre">EigenTensor/EigenMatrix/EigenVector/EigenScalar</span></code>.</p>
<p>Using EigenTensor as an example:</p>
<div class="highlight-cpp"><div class="highlight"><pre><span></span><span class="n">Tensor</span> <span class="n">t</span><span class="p">;</span>
<span class="kt">float</span><span class="o">*</span> <span class="n">p</span> <span class="o">=</span> <span class="n">t</span><span class="p">.</span><span class="n">mutable_data</span><span class="o">&lt;</span><span class="kt">float</span><span class="o">&gt;</span><span class="p">(</span><span class="n">make_ddim</span><span class="p">({</span><span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">}),</span> <span class="n">platform</span><span class="o">::</span><span class="n">CPUPlace</span><span class="p">());</span>
<span class="k">for</span> <span class="p">(</span><span class="kt">int</span> <span class="n">i</span> <span class="o">=</span> <span class="mi">0</span><span class="p">;</span> <span class="n">i</span> <span class="o">&lt;</span> <span class="mi">1</span> <span class="o">*</span> <span class="mi">2</span> <span class="o">*</span> <span class="mi">3</span><span class="p">;</span> <span class="n">i</span><span class="o">++</span><span class="p">)</span> <span class="p">{</span>
  <span class="n">p</span><span class="p">[</span><span class="n">i</span><span class="p">]</span> <span class="o">=</span> <span class="k">static_cast</span><span class="o">&lt;</span><span class="kt">float</span><span class="o">&gt;</span><span class="p">(</span><span class="n">i</span><span class="p">);</span>
<span class="p">}</span>

<span class="n">EigenTensor</span><span class="o">&lt;</span><span class="kt">float</span><span class="p">,</span> <span class="mi">3</span><span class="o">&gt;::</span><span class="n">Type</span> <span class="n">et</span> <span class="o">=</span> <span class="n">EigenTensor</span><span class="o">&lt;</span><span class="kt">float</span><span class="p">,</span> <span class="mi">3</span><span class="o">&gt;::</span><span class="n">From</span><span class="p">(</span><span class="n">t</span><span class="p">);</span>
</pre></div>
</div>
<p><code class="docutils literal"><span class="pre">From</span></code> is an interfacing method provided by the EigenTensor template, which implements the transformation from a <code class="docutils literal"><span class="pre">paddle::framework::Tensor</span></code> object to an EigenTensor. Since <code class="docutils literal"><span class="pre">rank</span></code> is a template parameter, it needs to be explicitly specified at the time of the transformation.</p>
<p>In Eigen, tensors with different ranks are different types, with <code class="docutils literal"><span class="pre">Vector</span></code> bring a rank-1 instance. Note that <code class="docutils literal"><span class="pre">EigenVector&lt;T&gt;::From</span></code> uses a transformation from an 1-dimensional Paddle tensor to a 1-dimensional Eigen tensor while <code class="docutils literal"><span class="pre">EigenVector&lt;T&gt;::Flatten</span></code> reshapes a paddle tensor and flattens it into a 1-dimensional Eigen tensor. Both resulting tensors are still typed EigenVector.</p>
<p>For more transformations, see the <a class="reference external" href="https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/eigen_test.cc">unit tests</a> in the <code class="docutils literal"><span class="pre">eigen_test.cc</span></code> file.</p>
</div>
<div class="section" id="implementing-computation">
<span id="implementing-computation"></span><h2>Implementing Computation<a class="headerlink" href="#implementing-computation" title="Permalink to this headline"></a></h2>
<p>While computing, the device interface is needed from the EigenTensors on the left hand side of the assignments. Note that the computation between EigenTensors only changes the data originally inthe Tensor and does not change all the shape information associated with the Tensor.</p>
<div class="highlight-cpp"><div class="highlight"><pre><span></span><span class="k">auto</span> <span class="n">x</span> <span class="o">=</span> <span class="n">EigenVector</span><span class="o">&lt;</span><span class="n">T</span><span class="o">&gt;::</span><span class="n">Flatten</span><span class="p">(</span><span class="o">*</span><span class="n">input0</span><span class="p">);</span>
<span class="k">auto</span> <span class="n">y</span> <span class="o">=</span> <span class="n">EigenVector</span><span class="o">&lt;</span><span class="n">T</span><span class="o">&gt;::</span><span class="n">Flatten</span><span class="p">(</span><span class="o">*</span><span class="n">input1</span><span class="p">);</span>
<span class="k">auto</span> <span class="n">z</span> <span class="o">=</span> <span class="n">EigenVector</span><span class="o">&lt;</span><span class="n">T</span><span class="o">&gt;::</span><span class="n">Flatten</span><span class="p">(</span><span class="o">*</span><span class="n">output</span><span class="p">);</span>
<span class="k">auto</span> <span class="n">place</span> <span class="o">=</span> <span class="n">context</span><span class="p">.</span><span class="n">GetEigenDevice</span><span class="o">&lt;</span><span class="n">Place</span><span class="o">&gt;</span><span class="p">();</span>
<span class="n">z</span><span class="p">.</span><span class="n">device</span><span class="p">(</span><span class="n">place</span><span class="p">)</span> <span class="o">=</span> <span class="n">x</span> <span class="o">+</span> <span class="n">y</span><span class="p">;</span>
</pre></div>
</div>
<p>In this code segment, input0/input1/output can be Tensors of arbitrary dimension. We are calling Flatten from EigenVector, transforming a tensor of any dimension into a 1-dimensional EigenVector. After completing computation, input0/input1/output will retain the same shape information, and they can be resized using the <code class="docutils literal"><span class="pre">Resize</span></code> interface.</p>
<p>Because the Eigen Tensor module is under-documented, please refer to <code class="docutils literal"><span class="pre">OpKernel</span></code>&#8216;s computation code in TensorFlow&#8217;s <a class="reference external" href="https://github.com/tensorflow/tensorflow/tree/master/tensorflow/core/kernels">kernel module documentation</a>.</p>
</div>
</div>


           </div>
          </div>
          <footer>
  

  <hr/>

  <div role="contentinfo">
    <p>
        &copy; Copyright 2016, PaddlePaddle developers.

    </p>
  </div>
  Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>. 

</footer>

        </div>
      </div>

    </section>

  </div>
  


  

    <script type="text/javascript">
        var DOCUMENTATION_OPTIONS = {
            URL_ROOT:'../../',
            VERSION:'',
            COLLAPSE_INDEX:false,
            FILE_SUFFIX:'.html',
            HAS_SOURCE:  true,
            SOURCELINK_SUFFIX: ".txt",
        };
    </script>
      <script type="text/javascript" src="../../_static/jquery.js"></script>
      <script type="text/javascript" src="../../_static/underscore.js"></script>
      <script type="text/javascript" src="../../_static/doctools.js"></script>
      <script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
       
  

  
  
    <script type="text/javascript" src="../../_static/js/theme.js"></script>
  
  
  <script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstrap.min.js" integrity="sha384-Tc5IQib027qvyjSMfHjOMaLkfuWVxZxUPnCJA7l2mCWNIpG9mGCD8wGNIcPD7Txa" crossorigin="anonymous"></script>
  <script src="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/js/perfect-scrollbar.jquery.min.js"></script>
  <script src="../../_static/js/paddle_doc_init.js"></script> 

</body>
</html>