fused_transformer.py 61.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15 16 17 18
from paddle.nn import functional as F
from paddle.incubate.nn import functional as incubate_f
from paddle.nn import Layer
from paddle.framework import ParamAttr
import paddle
19
from paddle.nn.layer.transformer import _convert_attention_mask, _convert_param_attr_to_list
20 21 22 23
from paddle.nn.initializer import Constant

import collections

24

25 26 27 28 29 30 31 32 33 34 35 36 37 38
# for distributed tensor model parallel
def _set_var_distributed(var):
    if var is None:
        return

    var.is_distributed = True

    # NOTE: use current_block and find_var_recursive to support while_loop
    startup_block = paddle.static.default_startup_program().current_block()
    main_block = paddle.static.default_main_program().current_block()
    startup_block._find_var_recursive(var.name).is_distributed = True
    main_block._find_var_recursive(var.name).is_distributed = True


39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
class FusedBiasDropoutResidualLayerNorm(Layer):
    """
    Applies fused_bias_dropout_residual_layer_norm operation.

    Parameters:
        embed_dim (int): The expected feature size in the input and output.
        dropout_rate (float, optional): The dropout probability used on attention
            weights to drop some attention targets for the dropout after attention.
            0 for no dropout. Default 0.5.
        bias_attr (ParamAttr|bool, optional): To specify the bias parameter property.
            Default: None, which means the default bias parameter property is used.
            If it is set to False, this layer will not have trainable bias parameter.
            See usage for details in :code:`ParamAttr`.
        epsilon (float, optional): The small value added to the variance to prevent
            division by zero. Default: 1e-05.

    Examples:

        .. code-block:: python

            # required: gpu
            import paddle
            # input: [batch_size, seq_len, embed_dim]
            x = paddle.rand((2, 4, 128))
            # residual: [batch_size, seq_len, embed_dim]
            residual = paddle.rand((2, 4, 128))
            fused_bias_dropout_residual_ln = paddle.incubate.nn.FusedBiasDropoutResidualLayerNorm(128)
            output = fused_bias_dropout_residual_ln(x, residual)  # [2, 4, 128]
    """

    def __init__(self,
                 embed_dim,
                 dropout_rate=0.5,
                 weight_attr=None,
                 bias_attr=None,
                 epsilon=1e-5,
                 name=None):
        super(FusedBiasDropoutResidualLayerNorm, self).__init__()
        assert embed_dim > 0, ("Expected embed_dim to be greater than 0, "
                               "but recieved {}".format(embed_dim))
        self._dtype = self._helper.get_default_dtype()
        self._bias_attr = bias_attr
        self._weight_attr = weight_attr
        self.embed_dim = embed_dim
83 84 85 86
        self.linear_bias = self.create_parameter(shape=[embed_dim],
                                                 attr=self._bias_attr,
                                                 dtype=self._dtype,
                                                 is_bias=True)
87 88 89 90
        self.ln_scale = self.create_parameter(
            attr=self._weight_attr,
            shape=[embed_dim],
            default_initializer=Constant(value=1.0))
91 92 93
        self.ln_bias = self.create_parameter(attr=self._bias_attr,
                                             shape=[embed_dim],
                                             is_bias=True)
94 95 96 97 98 99 100 101 102 103
        self.dropout_rate = dropout_rate
        self._epsilon = epsilon

        self.name = name

    def forward(self, x, residual):
        """
        Applies fused_bias_dropout_residual_layer_norm operation.

        Parameters:
104 105 106 107 108 109
            x (Tensor): The input tensor. It is a tensor with shape
                `[batch_size, seq_len, embed_dim]`. The data type should be
                float32 or float64.
            residual (Tensor, optional): The residual tensor. It is a tensor
                with shape `[batch_size, value_length, vdim]`. The data type
                should be float32 or float64.
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135

        Returns:
            Tensor|tuple: It is a tensor that has the same shape and data type \
                as `x`.
        """

        out = incubate_f.fused_bias_dropout_residual_layer_norm(
            x=x,
            residual=residual,
            bias=self.linear_bias,
            ln_scale=self.ln_scale,
            ln_bias=self.ln_bias,
            dropout_rate=self.dropout_rate,
            ln_epsilon=self._epsilon,
            training=self.training,
            mode='upscale_in_train',
            name=self.name)
        return out

    def extra_repr(self):
        name_str = ', name={}'.format(self.name) if self.name else ''
        return 'embed_dim={}, seq_len={}, dropout_rate={}, epsilon={}, dtype={}{}'.format(
            self.embed_dim, self.seq_len, self.dropout_rate, self._epsilon,
            self._dtype, name_str)


136 137
class FusedMultiHeadAttention(Layer):
    """
138
    Attention mapps queries and a set of key-value pairs to outputs, and
139 140 141 142
    Multi-Head Attention performs multiple parallel attention to jointly attending
    to information from different representation subspaces.
    Please refer to `Attention Is All You Need <https://arxiv.org/pdf/1706.03762.pdf>`_
    for more details.
143

144 145 146
    Parameters:
        embed_dim (int): The expected feature size in the input and output.
        num_heads (int): The number of heads in multi-head attention.
147
        dropout_rate (float, optional): The dropout probability used on attention
148
            weights to drop some attention targets for the dropout after attention.
149 150
            0 for no dropout. Default 0.5.
        attn_dropout_rate (float, optional): The dropout probability used on attention
151
            weights to drop some attention targets for the dropout in attention.
152
            0 for no dropout. Default 0.5.
153 154 155 156
        kdim (int, optional): The feature size in key. If None, assumed equal to
            `embed_dim`. Default None.
        vdim (int, optional): The feature size in value. If None, assumed equal to
            `embed_dim`. Default None.
157
        normalize_before (bool, optional): Indicate  whether it is pre_layer_norm
158
            (True) or post_layer_norm architecture (False). Default False.
159
        need_weights (bool, optional): Indicate whether to return the attention
160
            weights. Now, only False is supported. Default False.
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
        qkv_weight_attr(ParamAttr, optional): To specify the weight parameter property
            for QKV projection computation. Default: None, which means the default weight
            parameter property is used. See usage for details in :code:`ParamAttr`.
        qkv_bias_attr(ParamAttr|bool, optional): To specify the bias parameter property
            for QKV projection computation. The `False` value means the corresponding layer
            would not have trainable bias parameter. Default: None, which means the
            default bias parameter property is used. See usage for details in :code:`ParamAttr`.
        linear_weight_attr(ParamAttr, optional): To specify the weight parameter property
            for linear projection computation. Default: None, which means the default weight
            parameter property is used. See usage for details in :code:`ParamAttr`.
        linear_bias_attr(ParamAttr|bool, optional): To specify the bias parameter property
            for linear projection computation. The `False` value means the corresponding layer would
            not have trainable bias parameter. Default: None, which means the default bias
            parameter property is used. See usage for details in :code:`ParamAttr`.
        pre_ln_scale_attr(ParamAttr, optional): To specify the weight parameter property
            for pre_layer_norm computation. Otherwise, all layers both use it as
            `attr` to create parameters. Default: None, which means the default weight
            parameter property is used. See usage for details in :code:`ParamAttr`.
        pre_ln_bias_attr(ParamAttr|bool, optional): To specify the bias parameter property
            for pre_layer_norm computation. The `False` value means the corresponding layer would
            not have trainable bias parameter. Default: None, which means the default bias
            parameter property is used. See usage for details in :code:`ParamAttr`.
        ln_scale_attr(ParamAttr, optional): To specify the weight parameter property
            for post_layer_norm computation. Default: None, which means the default weight
            parameter property is used. See usage for details in :code:`ParamAttr`.
        ln_bias_attr(ParamAttr|bool, optional): To specify the bias parameter property
            for post_layer_norm computation. The `False` value means the corresponding layer would
            not have trainable bias parameter. Default: None, which means the default bias
            parameter property is used. See usage for details in :code:`ParamAttr`.
L
Li Min 已提交
190 191
        epsilon (float, optional): The small value added to the variance to prevent
            division by zero. Default: 1e-05.
192 193
        nranks (int, optional): Distributed tensor model parallel nranks. Default is 1, means not using tensor parallel.
        ring_id (int, optional): For distributed tensor model parallel. Default is -1, means not using tensor parallel.
194

195
    Examples:
196

197
        .. code-block:: python
198 199

            # required: gpu
200
            import paddle
201
            # input: [batch_size, sequence_length, embed_dim]
202 203 204
            query = paddle.rand((2, 4, 128))
            # self attention mask: [batch_size, num_heads, query_len, query_len]
            attn_mask = paddle.rand((2, 2, 4, 4))
205
            multi_head_attn = paddle.incubate.nn.FusedMultiHeadAttention(128, 2)
206 207 208 209 210 211
            output = multi_head_attn(query, None, None, attn_mask=attn_mask)  # [2, 4, 128]
    """

    def __init__(self,
                 embed_dim,
                 num_heads,
212
                 dropout_rate=0.5,
Z
zhangkaihuo 已提交
213
                 attn_dropout_rate=0.5,
214 215
                 kdim=None,
                 vdim=None,
216
                 normalize_before=False,
217
                 need_weights=False,
218 219 220 221 222 223 224 225
                 qkv_weight_attr=None,
                 qkv_bias_attr=None,
                 linear_weight_attr=None,
                 linear_bias_attr=None,
                 pre_ln_scale_attr=None,
                 pre_ln_bias_attr=None,
                 ln_scale_attr=None,
                 ln_bias_attr=None,
226
                 epsilon=1e-5,
227 228
                 nranks=1,
                 ring_id=-1,
229
                 name=None):
230
        super(FusedMultiHeadAttention, self).__init__()
231 232

        assert embed_dim > 0, ("Expected embed_dim to be greater than 0, "
233
                               "but received {}".format(embed_dim))
234
        assert num_heads > 0, ("Expected nhead to be greater than 0, "
235
                               "but received {}".format(num_heads))
236 237 238

        self.normalize_before = normalize_before
        self._dtype = self._helper.get_default_dtype()
239
        self._epsilon = epsilon
240
        self._ring_id = ring_id
241

242 243
        self.embed_dim = embed_dim
        self.num_heads = num_heads
244
        self.head_dim = embed_dim // num_heads
245 246 247
        self.kdim = kdim
        self.vdim = vdim
        self.need_weights = need_weights
248
        assert self.head_dim * num_heads == embed_dim, "embed_dim must be divisible by num_heads"
249 250 251 252 253
        assert need_weights is False, "Only support need_weight is False now."

        # tensor model parallel
        assert num_heads % nranks == 0
        num_heads = num_heads // nranks
254 255 256

        self.qkv_weight = self.create_parameter(
            shape=[3, num_heads, self.head_dim, embed_dim],
257
            attr=qkv_weight_attr,
258 259 260 261
            dtype=self._dtype,
            is_bias=False)
        self.qkv_bias = self.create_parameter(
            shape=[3, num_heads, self.head_dim],
262
            attr=qkv_bias_attr,
263 264
            dtype=self._dtype,
            is_bias=True)
265 266 267 268 269
        self.linear_weight = self.create_parameter(
            shape=[num_heads * self.head_dim, embed_dim],
            attr=linear_weight_attr,
            dtype=self._dtype,
            is_bias=False)
270
        self.linear_bias = self.create_parameter(shape=[embed_dim],
271
                                                 attr=linear_bias_attr,
272 273
                                                 dtype=self._dtype,
                                                 is_bias=True)
274

275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
        # tensor model parallel
        if nranks > 1:
            assert ring_id != -1
            # column parallel
            _set_var_distributed(self.qkv_weight)
            _set_var_distributed(self.qkv_bias)
            # row parallel
            _set_var_distributed(self.linear_weight)

        if normalize_before:
            self.pre_ln_scale = self.create_parameter(
                attr=pre_ln_scale_attr,
                shape=[embed_dim],
                default_initializer=Constant(value=1.0))
            self.pre_ln_bias = self.create_parameter(attr=pre_ln_bias_attr,
                                                     shape=[embed_dim],
                                                     is_bias=True)
            self.ln_scale = None
            self.ln_bias = None
        else:
            self.pre_ln_scale = None
            self.pre_ln_bias = None
            self.ln_scale = self.create_parameter(
                attr=ln_scale_attr,
                shape=[embed_dim],
                default_initializer=Constant(value=1.0))
            self.ln_bias = self.create_parameter(attr=ln_bias_attr,
302 303
                                                 shape=[embed_dim],
                                                 is_bias=True)
304 305 306 307 308

        self.dropout_rate = dropout_rate
        self.attn_dropout_rate = attn_dropout_rate

        self.name = name
309 310 311 312 313

    def forward(self, query, key=None, value=None, attn_mask=None, cache=None):
        """
        Applies multi-head attention to map queries and a set of key-value pairs
        to outputs.
314

315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
        Parameters:
            query (Tensor): The queries for multi-head attention. It is a
                tensor with shape `[batch_size, query_length, embed_dim]`. The
                data type should be float32 or float64.
            key (Tensor, optional): The keys for multi-head attention. It is
                a tensor with shape `[batch_size, key_length, kdim]`. The
                data type should be float32 or float64. If None, use `query` as
                `key`. Default None.
            value (Tensor, optional): The values for multi-head attention. It
                is a tensor with shape `[batch_size, value_length, vdim]`.
                The data type should be float32 or float64. If None, use `query` as
                `value`. Default None.
            attn_mask (Tensor, optional): A tensor used in multi-head attention
                to prevents attention to some unwanted positions, usually the
                paddings or the subsequent positions. It is a tensor with shape
                broadcasted to `[batch_size, n_head, sequence_length, sequence_length]`.
331 332 333 334 335
                When the data type is bool, the unwanted positions have `False`
                values and the others have `True` values. When the data type is
                int, the unwanted positions have 0 values and the others have 1
                values. When the data type is float, the unwanted positions have
                `-INF` values and the others have 0 values. It can be None when
336 337
                nothing wanted or needed to be prevented attention to. Default None.
            cache (MultiHeadAttention.Cache|MultiHeadAttention.StaticCache, optional):
338
                Now, only None is supported. Default None.
339

340 341
        Returns:
            Tensor|tuple: It is a tensor that has the same shape and data type \
342
                as `query`, representing attention output.
343
        """
344 345 346 347 348 349 350 351 352 353 354 355 356
        if attn_mask is not None:
            # Support bool or int mask
            attn_mask = _convert_attention_mask(attn_mask, query.dtype)

        out = incubate_f.fused_multi_head_attention(
            x=query,
            qkv_weight=self.qkv_weight,
            linear_weight=self.linear_weight,
            pre_layer_norm=self.normalize_before,
            pre_ln_scale=self.pre_ln_scale,
            pre_ln_bias=self.pre_ln_bias,
            ln_scale=self.ln_scale,
            ln_bias=self.ln_bias,
357
            pre_ln_epsilon=self._epsilon,
358 359
            qkv_bias=self.qkv_bias,
            linear_bias=self.linear_bias,
360
            cache_kv=cache,
361 362 363
            attn_mask=attn_mask,
            dropout_rate=self.dropout_rate,
            attn_dropout_rate=self.attn_dropout_rate,
364 365
            ln_epsilon=self._epsilon,
            training=self.training,
366
            ring_id=self._ring_id,
367
            name=self.name)
368
        return out
369

370 371 372 373 374 375 376
    def extra_repr(self):
        name_str = ', name={}'.format(self.name) if self.name else ''
        return 'embed_dim={}, num_heads={}, dropout_rate={}, attn_dropout_rate={}, epsilon={}, kdim={}, vdim={}, normalize_before={}, need_weights={}, dtype={}{}'.format(
            self.embed_dim, self.num_heads, self.dropout_rate,
            self.attn_dropout_rate, self._epsilon, self.kdim, self.vdim,
            self.normalize_before, self.need_weights, self._dtype, name_str)

377 378

class FusedFeedForward(Layer):
379 380 381 382 383 384
    """
    Parameters:
        d_model (int): The expected feature size in the input and output.
        dim_feedforward (int): The hidden layer size.
        dropout_rate (float, optional): The dropout probability used in pre-process
            and post-precess. Default 0.1
385 386
        epsilon (float, optional): he small value added to the variance to prevent
            division by zero. Default: 1e-05.
387 388 389 390 391
        activation (str, optional): The activation function. Default relu.
        act_dropout_rate (float, optional): The dropout probability after activition.
            If None, use the value of `dropout_rate`. Default None
        normalize_before (bool, optional): Indicate whether to put layer normalization
            into, preprocessing or postprocessing. Default False
392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
        linear1_weight_attr(ParamAttr, optional): To specify the weight parameter property
            for FFN first linear. Default: None, which means the default weight
            parameter property is used. See usage for details in :code:`ParamAttr`.
        linear1_bias_attr(ParamAttr|bool, optional): To specify the bias parameter property
            for FFN first linear. The `False` value means the corresponding layer would
            not have trainable bias parameter. Default: None, which means the default bias
            parameter property is used. See usage for details in :code:`ParamAttr`.
        linear2_weight_attr(ParamAttr, optional): To specify the weight parameter property
            for FFN second linear. Default: None, which means the default weight
            parameter property is used. See usage for details in :code:`ParamAttr`.
        linear2_bias_attr(ParamAttr|bool, optional): To specify the bias parameter property
            for FFN second linear. The `False` value means the corresponding layer would
            not have trainable bias parameter. Default: None, which means the default bias
            parameter property is used. See usage for details in :code:`ParamAttr`.
        ln1_scale_attr(ParamAttr, optional): To specify the weight parameter property
            for FFN pre_layer_norm. Default: None, which means the default weight
            parameter property is used. See usage for details in :code:`ParamAttr`.
        ln1_bias_attr(ParamAttr|bool, optional): To specify the bias parameter property
            for FFN pre_layer_norm. The `False` value means the corresponding layer would
            not have trainable bias parameter. Default: None, which means the default bias
            parameter property is used. See usage for details in :code:`ParamAttr`.
        ln2_scale_attr(ParamAttr, optional): To specify the weight parameter property
            for FFN post_layer_norm. Default: None, which means the default weight
            parameter property is used. See usage for details in :code:`ParamAttr`.
        ln2_bias_attr(ParamAttr|bool, optional): To specify the bias parameter property
            for FFN layer_norm. The `False` value means the corresponding layer would
            not have trainable bias parameter. Default: None, which means the default bias
            parameter property is used. See usage for details in :code:`ParamAttr`.
        nranks (int, optional): Distributed tensor model parallel nranks. Default is 1, means not using tensor parallel.
        ring_id (int, optional): For distributed tensor model parallel. Default is -1, means not using tensor parallel.
        name (str, optional): The default value is None.  Normally there is no need for user to set
            this property. For more information, please refer to :ref:`api_guide_Name`.
424 425 426 427 428 429 430 431 432 433 434 435 436 437 438

    Examples:
        .. code-block:: python

            # required: gpu
            import paddle
            from paddle.incubate.nn import FusedFeedForward

            fused_feedforward_layer = FusedFeedForward(8, 8)
            x = paddle.rand((1, 8, 8))
            out = fused_feedforward_layer(x)
            print(out.numpy().shape)
            # (1, 8, 8)
    """

439 440 441
    def __init__(self,
                 d_model,
                 dim_feedforward,
442
                 dropout_rate=0.1,
443
                 epsilon=1e-05,
444
                 activation="relu",
445
                 act_dropout_rate=None,
446
                 normalize_before=False,
447 448 449 450 451 452 453 454 455 456
                 linear1_weight_attr=None,
                 linear1_bias_attr=None,
                 linear2_weight_attr=None,
                 linear2_bias_attr=None,
                 ln1_scale_attr=None,
                 ln1_bias_attr=None,
                 ln2_scale_attr=None,
                 ln2_bias_attr=None,
                 nranks=1,
                 ring_id=-1,
457
                 name=None):
458 459

        super(FusedFeedForward, self).__init__()
460
        assert d_model > 0, (
461
            "Expected d_model to be greater than 0, but received {}".format(
462 463
                d_model))
        assert dim_feedforward > 0, (
464
            "Expected dim_feedforward to be greater than 0, but received {}".
465 466 467 468
            format(dim_feedforward))

        self._dtype = self._helper.get_default_dtype()
        self._d_model = d_model
469 470 471

        assert dim_feedforward % nranks == 0
        dim_feedforward = dim_feedforward // nranks
472 473 474 475 476
        self._dim_feedforward = dim_feedforward
        self._dropout_rate = dropout_rate
        self._act_dropout_rate = dropout_rate if act_dropout_rate is None else act_dropout_rate
        self._act_method = activation
        self._normalize_before = normalize_before
477
        self._epsilon = epsilon
478
        self._ring_id = ring_id
479 480 481

        self._linear1_weight = self.create_parameter(
            shape=[d_model, dim_feedforward],
482
            attr=linear1_weight_attr,
483 484
            dtype=self._dtype,
            is_bias=False)
485
        self._linear1_bias = self.create_parameter(shape=[dim_feedforward],
486
                                                   attr=linear1_bias_attr,
487 488
                                                   dtype=self._dtype,
                                                   is_bias=True)
489 490 491

        self._linear2_weight = self.create_parameter(
            shape=[dim_feedforward, d_model],
492
            attr=linear2_weight_attr,
493 494 495
            dtype=self._dtype,
            is_bias=False)

496
        self._linear2_bias = self.create_parameter(shape=[d_model],
497
                                                   attr=linear2_bias_attr,
498 499
                                                   dtype=self._dtype,
                                                   is_bias=True)
500

501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
        if nranks > 1:
            assert ring_id != -1
            # column parallel
            _set_var_distributed(self._linear1_weight)
            _set_var_distributed(self._linear1_bias)
            _set_var_distributed(self._linear2_weight)

        if normalize_before:
            self._ln1_scale = self.create_parameter(
                shape=[d_model],
                attr=ln1_scale_attr,
                is_bias=False,
                default_initializer=Constant(1.0))
            self._ln1_bias = self.create_parameter(shape=[d_model],
                                                   attr=ln1_bias_attr,
                                                   is_bias=True)
            self._ln2_scale = None
            self._ln2_bias = None
        else:
            self._ln1_scale = None
            self._ln1_bias = None
            self._ln2_scale = self.create_parameter(
                shape=[d_model],
                attr=ln2_scale_attr,
                is_bias=False,
                default_initializer=Constant(1.0))
            self._ln2_bias = self.create_parameter(shape=[d_model],
                                                   attr=ln2_bias_attr,
                                                   is_bias=True)

531
        self.name = name
532 533

    def forward(self, src, cache=None):
534
        out = incubate_f.fused_feedforward(
535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
            src,
            self._linear1_weight,
            self._linear2_weight,
            self._linear1_bias,
            self._linear2_bias,
            self._ln1_scale,
            self._ln1_bias,
            self._ln2_scale,
            self._ln2_bias,
            dropout1_rate=self._act_dropout_rate,
            dropout2_rate=self._dropout_rate,
            activation=self._act_method,
            ln1_epsilon=self._epsilon,
            ln2_epsilon=self._epsilon,
            pre_layer_norm=self._normalize_before,
            training=self.training,
551
            ring_id=self._ring_id,
552
            name=self.name)
553
        return out
554

555 556 557 558 559 560 561
    def extra_repr(self):
        name_str = ', name={}'.format(self.name) if self.name else ''
        return 'd_model={}, dim_feedforward={}, dropout_rate={}, epsilon={}, activation={}, act_dropout_rate={}, normalize_before={}, dtype={}{}'.format(
            self._d_model, self._dim_feedforward, self._dropout_rate,
            self._epsilon, self._act_method, self._act_dropout_rate,
            self._normalize_before, self._dtype, name_str)

562 563 564

class FusedTransformerEncoderLayer(Layer):
    """
565
    FusedTransformerEncoderLayer is composed of two sub-layers which are self (multi-head)
566 567 568 569 570 571 572 573 574 575
    attention and feedforward network. Before and after each sub-layer, pre-process
    and post-precess would be applied on the input and output accordingly. If
    `normalize_before` is True, pre-process is layer normalization and post-precess
    includes dropout, residual connection. Otherwise, no pre-process and post-precess
    includes dropout, residual connection, layer normalization.

    Parameters:
        d_model (int): The expected feature size in the input and output.
        nhead (int): The number of heads in multi-head attention(MHA).
        dim_feedforward (int): The hidden layer size in the feedforward network(FFN).
576
        dropout_rate (float, optional): The dropout probability used in pre-process
577 578 579
            and post-precess of MHA and FFN sub-layer. Default 0.1
        activation (str, optional): The activation function in the feedforward
            network. Default relu.
580
        attn_dropout_rate (float, optional): The dropout probability used
581 582
            in MHA to drop some attention target. If None, use the value of
            `dropout`. Default None
583
        act_dropout_rate (float, optional): The dropout probability used after FFN
584 585 586 587 588 589 590 591 592 593 594
            activition.  If None, use the value of `dropout`. Default None
        normalize_before (bool, optional): Indicate whether to put layer normalization
            into preprocessing of MHA and FFN sub-layers. If True, pre-process is layer
            normalization and post-precess includes dropout, residual connection.
            Otherwise, no pre-process and post-precess includes dropout, residual
            connection, layer normalization. Default False
        weight_attr(ParamAttr|list|tuple, optional): To specify the weight parameter property.
            If it is a list/tuple, `weight_attr[0]` would be used as `weight_attr` for
            MHA, and `weight_attr[1]` would be used as `weight_attr` for linear in FFN.
            Otherwise, MHA and FFN both use it as `weight_attr` to create parameters.
            Default: None, which means the default weight parameter property is used.
595
            See usage for details in :code:`ParamAttr` .
596 597 598 599 600 601 602
        bias_attr (ParamAttr|list|tuple|bool, optional): To specify the bias parameter property.
            If it is a list/tuple, `bias_attr[0]` would be used as `bias_attr` for
            MHA, and `bias_attr[1]` would be used as `bias_attr` for linear in FFN.
            Otherwise, MHA and FFN both use it as `bias_attr` to create parameters.
            The `False` value means the corresponding layer would not have trainable
            bias parameter. See usage for details in :code:`ParamAttr` . Default: None,
            which means the default bias parameter property is used.
603

604 605 606 607

    Examples:

        .. code-block:: python
608

609
	    # required: gpu
610
            import paddle
611
            from paddle.incubate.nn import FusedTransformerEncoderLayer
612 613 614 615 616

            # encoder input: [batch_size, src_len, d_model]
            enc_input = paddle.rand((2, 4, 128))
            # self attention mask: [batch_size, n_head, src_len, src_len]
            attn_mask = paddle.rand((2, 2, 4, 4))
617
            encoder_layer = FusedTransformerEncoderLayer(128, 2, 512)
618 619 620 621 622 623 624
            enc_output = encoder_layer(enc_input, attn_mask)  # [2, 4, 128]
    """

    def __init__(self,
                 d_model,
                 nhead,
                 dim_feedforward,
625
                 dropout_rate=0.1,
626
                 activation="relu",
627 628
                 attn_dropout_rate=None,
                 act_dropout_rate=None,
629 630 631 632 633 634 635 636
                 normalize_before=False,
                 weight_attr=None,
                 bias_attr=None):
        self._config = locals()
        self._config.pop("self")
        self._config.pop("__class__", None)  # py3

        super(FusedTransformerEncoderLayer, self).__init__()
637
        assert d_model > 0, ("Expected d_model to be greater than 0, "
638
                             "but received {}".format(d_model))
639
        assert nhead > 0, ("Expected nhead to be greater than 0, "
640
                           "but received {}".format(nhead))
641 642
        assert dim_feedforward > 0, (
            "Expected dim_feedforward to be greater than 0, "
643
            "but received {}".format(dim_feedforward))
644 645 646 647 648 649 650 651 652 653
        attn_dropout_rate = dropout_rate if attn_dropout_rate is None else attn_dropout_rate
        act_dropout_rate = dropout_rate if act_dropout_rate is None else act_dropout_rate
        self.normalize_before = normalize_before

        weight_attrs = _convert_param_attr_to_list(weight_attr, 2)
        bias_attrs = _convert_param_attr_to_list(bias_attr, 2)

        self.fused_attn = FusedMultiHeadAttention(
            d_model,
            nhead,
654 655 656
            dropout_rate=dropout_rate,
            attn_dropout_rate=attn_dropout_rate,
            normalize_before=self.normalize_before,
657 658 659 660 661 662 663 664
            qkv_weight_attr=weight_attrs[0],
            qkv_bias_attr=bias_attrs[0],
            linear_weight_attr=weight_attrs[0],
            linear_bias_attr=bias_attrs[0],
            pre_ln_scale_attr=weight_attrs[0],
            pre_ln_bias_attr=bias_attrs[0],
            ln_scale_attr=weight_attrs[0],
            ln_bias_attr=bias_attrs[0])
665

666 667 668 669 670 671
        self.ffn = FusedFeedForward(d_model,
                                    dim_feedforward,
                                    dropout_rate=dropout_rate,
                                    activation=activation,
                                    act_dropout_rate=act_dropout_rate,
                                    normalize_before=self.normalize_before,
672 673 674 675
                                    linear1_weight_attr=weight_attrs[1],
                                    linear1_bias_attr=bias_attrs[1],
                                    linear2_weight_attr=weight_attrs[1],
                                    linear2_bias_attr=bias_attrs[1])
676 677 678 679 680 681 682 683 684 685 686 687

    def forward(self, src, src_mask=None, cache=None):
        """
        Applies a Transformer encoder layer on the input.
        Parameters:
            src (Tensor): The input of Transformer encoder layer. It is
                a tensor with shape `[batch_size, sequence_length, d_model]`.
                The data type should be float32 or float64.
            src_mask (Tensor, optional): A tensor used in multi-head attention
                to prevents attention to some unwanted positions, usually the
                paddings or the subsequent positions. It is a tensor with shape
                broadcasted to `[batch_size, n_head, sequence_length, sequence_length]`.
688 689 690 691 692
                When the data type is bool, the unwanted positions have `False`
                values and the others have `True` values. When the data type is
                int, the unwanted positions have 0 values and the others have 1
                values. When the data type is float, the unwanted positions have
                `-INF` values and the others have 0 values. It can be None when
693 694 695 696 697 698 699 700 701 702 703 704 705 706
                nothing wanted or needed to be prevented attention to. Default None.
            cache (Tensor, optional): It is an instance of `MultiHeadAttention.Cache`.
                See `TransformerEncoderLayer.gen_cache` for more details. It is
                only used for inference and should be None for training. Default
                None.
        Returns:
            Tensor|tuple: It is a tensor that has the same shape and data type \
                as `enc_input`, representing the output of Transformer encoder \
                layer. Or a tuple if `cache` is not None, except for encoder \
                layer output, the tuple includes the new cache which is same \
                as input `cache` argument but `incremental_cache` has an \
                incremental length. See `MultiHeadAttention.gen_cache` and \
                `MultiHeadAttention.forward` for more details.
        """
707 708 709 710
        src_mask = _convert_attention_mask(src_mask, src.dtype)
        if cache is None:
            attn_out = self.fused_attn(src, attn_mask=src_mask)
        else:
711 712 713
            attn_out, incremental_cache = self.fused_attn(src,
                                                          attn_mask=src_mask,
                                                          cache=cache)
714 715 716 717

        ffn_out = self.ffn(attn_out)

        return ffn_out if cache is None else (ffn_out, incremental_cache)
718 719 720 721 722 723 724 725 726 727


class FusedTransformer(Layer):
    """
    A Transformer model composed of an instance of `TransformerEncoder` and an
    instance of `TransformerDecoder`. While the embedding layer and output layer
    are not included.

    Please refer to `Attention is all you need <http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf>`_ ,
    and see `TransformerEncoder` and `TransformerDecoder` for more details.
728

729 730 731 732
    Users can configurate the model architecture with corresponding parameters.
    Note the usage of `normalize_before` representing where to apply layer
    normalization (in pre-process or post-precess of multi-head attention or FFN),
    and some transformer like models are different on this, such as
733
    `BERT <https://arxiv.org/abs/1810.04805>`_ and `GPT2 <https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf>`_ .
734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758
    The default architecture here places layer normalization in post-process and
    applies another layer normalization on the output of last encoder/decoder layer.

    Parameters:
        d_model (int, optional): The expected feature size in the encoder/decoder input
            and output. Default 512
        nhead (int, optional): The number of heads in multi-head attention(MHA). Default 8
        num_encoder_layers (int, optional): The number of layers in encoder. Default 6
        num_decoder_layers (int, optional): The number of layers in decoder. Default 6
        dim_feedforward (int, optional): The hidden layer size in the feedforward network(FFN). Default 2048
        dropout (float, optional): The dropout probability used in pre-process
            and post-precess of MHA and FFN sub-layer. Default 0.1
        activation (str, optional): The activation function in the feedforward
            network. Default relu.
        attn_dropout (float, optional): The dropout probability used
            in MHA to drop some attention target. If None, use the value of
            `dropout`. Default None
        act_dropout (float, optional): The dropout probability used after FFN
            activition.  If None, use the value of `dropout`. Default None
        normalize_before (bool, optional): Indicate whether to put layer normalization
            into preprocessing of MHA and FFN sub-layers. If True, pre-process is layer
            normalization and post-precess includes dropout, residual connection.
            Otherwise, no pre-process and post-precess includes dropout, residual
            connection, layer normalization. Default False
        weight_attr(ParamAttr|list|tuple, optional): To specify the weight parameter property.
759 760 761 762 763 764 765 766 767 768
            If it is a list/tuple, the length of `weight_attr` could be 1, 2 or 3. If it is 3,
            `weight_attr[0]` would be used as `weight_attr` for self attention, `weight_attr[1]`
            would be used as `weight_attr` for cross attention of `TransformerDecoder`,
            and `weight_attr[2]` would be used as `weight_attr` for linear in FFN.
            If it is 2, `weight_attr[0]` would be used as `weight_attr` both for self attention
            and cross attntion and `weight_attr[1]` would be used as `weight_attr` for
            linear in FFN. If it is 1, `weight_attr[0]` would be used as `weight_attr`
            for self attention, cross attention and linear in FFN. Otherwise,
            the three sub-layers all uses it as `weight_attr` to create parameters.
            Default: None, which means the default weight parameter property is used.
769
            See usage for details
770
            in :code:`ParamAttr` .
771
        bias_attr (ParamAttr|list|tuple|bool, optional): To specify the bias parameter property.
772 773 774 775 776 777 778 779 780 781 782
            If it is a list/tuple, the length of `bias_attr` could be 1, 2 or 3. If it is 3,
            `bias_attr[0]` would be used as `bias_attr` for self attention, `bias_attr[1]`
            would be used as `bias_attr` for cross attention of `TransformerDecoder`,
            and `bias_attr[2]` would be used as `bias_attr` for linear in FFN.
            If it is 2, `bias_attr[0]` would be used as `bias_attr` both for self attention
            and cross attntion and `bias_attr[1]` would be used as `bias_attr` for
            linear in FFN. If it is 1, `bias_attr[0]` would be used as `bias_attr`
            for self attention, cross attention and linear in FFN. Otherwise,
            the three sub-layers all uses it as `bias_attr` to create parameters.
            The `False` value means the corresponding layer would not have trainable
            bias parameter. See usage for details in :code:`ParamAttr` .
783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829
            Default: None,which means the default bias parameter property is used.
        custom_encoder (Layer, optional): If custom encoder is provided, use it as the encoder.
            Default None
        custom_decoder (Layer, optional): If custom decoder is provided, use it as the decoder.
            Default None

    Examples:

        .. code-block:: python

            import paddle
            from paddle.nn import Transformer

            # src: [batch_size, tgt_len, d_model]
            enc_input = paddle.rand((2, 4, 128))
            # tgt: [batch_size, src_len, d_model]
            dec_input = paddle.rand((2, 6, 128))
            # src_mask: [batch_size, n_head, src_len, src_len]
            enc_self_attn_mask = paddle.rand((2, 2, 4, 4))
            # tgt_mask: [batch_size, n_head, tgt_len, tgt_len]
            dec_self_attn_mask = paddle.rand((2, 2, 6, 6))
            # memory_mask: [batch_size, n_head, tgt_len, src_len]
            cross_attn_mask = paddle.rand((2, 2, 6, 4))
            transformer = Transformer(128, 2, 4, 4, 512)
            output = transformer(enc_input,
                                 dec_input,
                                 enc_self_attn_mask,
                                 dec_self_attn_mask,
                                 cross_attn_mask)  # [2, 6, 128]
    """

    def __init__(self,
                 d_model=512,
                 nhead=8,
                 num_encoder_layers=6,
                 num_decoder_layers=6,
                 dim_feedforward=2048,
                 dropout=0.1,
                 activation="relu",
                 attn_dropout=None,
                 act_dropout=None,
                 normalize_before=False,
                 weight_attr=None,
                 bias_attr=None,
                 custom_encoder=None,
                 custom_decoder=None):
        super(fusedTransformer, self).__init__()
830
        raise NotImplementedError()
831 832

    def forward(self, src, tgt, src_mask=None, tgt_mask=None, memory_mask=None):
833
        raise NotImplementedError()
834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019


class FusedMultiTransformer(Layer):
    """
    FusedMultiTransformer is composed of multi transformer layers which contains two
    sub-layers which are self (multi-head) attention and feedforward network. The
    function of one transformer layer is consistent with the following pseudo code:

    .. code-block:: python

        if pre_layer_norm:
            out = layer_norm(x)
            out = qkv_linear(out) + qkv_bias
        else:
            out = qkv_linear(x) + qkv_bias
        out = transpose(out, perm=[2, 0, 3, 1, 4])
        # extract q, k and v from out.
        q = out[0:1, ::]
        k = out[1:2, ::]
        v = out[2:3, ::]
        out = q * k^t
        out = attn_mask + out
        out = softmax(out)
        out = dropout(out)
        out = out * v
        out = transpose(out, perm=[0, 2, 1, 3])
        out = linear(out)
        if pre_layer_norm:
            out = x + dropout(out + bias)
        else:
            out = layer_norm(x + dropout(out + bias))

        residual = out;
        if pre_layer_norm:
            out = ffn_layer_norm(out)
        out = ffn1_linear(out)
        out = dropout(activation(out + ffn1_bias))
        out = ffn2_linear(out)
        out = residual + dropout(out + ffn2_bias)
        if not pre_layer_norm:
            out = ffn_layer_norm(out)

    Parameters:
        embed_dim (int): The expected feature size in the input and output.
        num_heads (int): The number of heads in multi-head attention(MHA).
        dim_feedforward (int): The hidden layer size in the feedforward network(FFN).
        dropout_rate (float, optional): The dropout probability used in pre-process
            and post-precess of MHA and FFN sub-layer. Default 0.0
        activation (str, optional): The activation function in the feedforward
            network. Default "gelu".
        normalize_before (bool, optional): Indicate whether to put layer normalization
            into preprocessing of MHA and FFN sub-layers. If True, pre-process is layer
            normalization and post-precess includes dropout, residual connection.
            Otherwise, no pre-process and post-precess includes dropout, residual
            connection, layer normalization. Default True
        ln_scale_attrs(ParamAttr|list|tuple, optional): To specify the weight parameter property
            for Attention layer_norm. For Attention layer_norm weight, if it is a list/tuple, `attrs[0]`
            would be used as `attr` for transformer layer 0, and `attrs[1]` would be used as
            `attr` for transformer layer 1,etc. Otherwise, all layers both use it as
            `attr` to create parameters. Default: None, which means the default weight
            parameter property is used. See usage for details in :code:`ParamAttr`.
        ln_bias_attrs(ParamAttr|list|tuple|bool, optional): To specify the bias parameter property
            for Attention layer_norm. For Attention layer_norm bias, if it is a list/tuple, `attrs[0]`
            would be used as `attr` for transformer layer 0, and `attrs[1]` would be used as
            `attr` for transformer layer 1,etc. Otherwise, all layers both use it as
            `attr` to create parameters. The `False` value means the corresponding layer would
            not have trainable bias parameter. Default: None, which means the default bias
            parameter property is used. See usage for details in :code:`ParamAttr`.
        qkv_weight_attrs(ParamAttr|list|tuple, optional): To specify the weight parameter property
            for Attention qkv computation. For Attention qkv weight, if it is a list/tuple, `attrs[0]`
            would be used as `attr` for transformer layer 0, and `attrs[1]` would be used as
            `attr` for transformer layer 1,etc. Otherwise, all layers both use it as
            `attr` to create parameters. Default: None, which means the default weight
            parameter property is used. See usage for details in :code:`ParamAttr`.
        qkv_bias_attrs(ParamAttr|list|tuple|bool, optional): To specify the bias parameter property
            for Attention qkv computation. For Attention qkv bias, if it is a list/tuple, `attrs[0]`
            would be used as `attr` for transformer layer 0, and `attrs[1]` would be used as
            `attr` for transformer layer 1,etc. Otherwise, all layers both use it as
            `attr` to create parameters. The `False` value means the corresponding layer would
            not have trainable bias parameter. Default: None, which means the default bias
            parameter property is used. See usage for details in :code:`ParamAttr`.
        linear_weight_attrs(ParamAttr|list|tuple, optional): To specify the weight parameter property
            for Attention linear. For Attention linear weight, if it is a list/tuple, `attrs[0]`
            would be used as `attr` for transformer layer 0, and `attrs[1]` would be used as
            `attr` for transformer layer 1,etc. Otherwise, all layers both use it as
            `attr` to create parameters. Default: None, which means the default weight
            parameter property is used. See usage for details in :code:`ParamAttr`.
        linear_bias_attrs(ParamAttr|list|tuple|bool, optional): To specify the bias parameter property
            for Attention linear computation. For Attention linear bias, if it is a list/tuple, `attrs[0]`
            would be used as `attr` for transformer layer 0, and `attrs[1]` would be used as
            `attr` for transformer layer 1,etc. Otherwise, all layers both use it as
            `attr` to create parameters. The `False` value means the corresponding layer would
            not have trainable bias parameter. Default: None, which means the default bias
            parameter property is used. See usage for details in :code:`ParamAttr`.
        ffn_ln_scale_attrs(ParamAttr|list|tuple, optional): To specify the weight parameter property
            for FFN layer_norm. For FFN layer_norm weight, if it is a list/tuple, `attrs[0]`
            would be used as `attr` for transformer layer 0, and `attrs[1]` would be used as
            `attr` for transformer layer 1,etc. Otherwise, all layers both use it as
            `attr` to create parameters. Default: None, which means the default weight
            parameter property is used. See usage for details in :code:`ParamAttr`.
        ffn_ln_bias_attrs(ParamAttr|list|tuple|bool, optional): To specify the bias parameter property
            for FFN layer_norm. For FFN layer_norm bias, if it is a list/tuple, `attrs[0]`
            would be used as `attr` for transformer layer 0, and `attrs[1]` would be used as
            `attr` for transformer layer 1,etc. Otherwise, all layers both use it as
            `attr` to create parameters. The `False` value means the corresponding layer would
            not have trainable bias parameter. Default: None, which means the default bias
            parameter property is used. See usage for details in :code:`ParamAttr`.
        ffn1_weight_attrs(ParamAttr|list|tuple, optional): To specify the weight parameter property
            for FFN first linear. For FFN first linear weight, if it is a list/tuple, `attrs[0]`
            would be used as `attr` for transformer layer 0, and `attrs[1]` would be used as
            `attr` for transformer layer 1,etc. Otherwise, all layers both use it as
            `attr` to create parameters. Default: None, which means the default weight
            parameter property is used. See usage for details in :code:`ParamAttr`.
        ffn1_bias_attrs(ParamAttr|list|tuple|bool, optional): To specify the bias parameter property
            for FFN first linear. For FFN first linear bias, if it is a list/tuple, `attrs[0]`
            would be used as `attr` for transformer layer 0, and `attrs[1]` would be used as
            `attr` for transformer layer 1,etc. Otherwise, all layers both use it as
            `attr` to create parameters. The `False` value means the corresponding layer would
            not have trainable bias parameter. Default: None, which means the default bias
            parameter property is used. See usage for details in :code:`ParamAttr`.
        ffn2_weight_attrs(ParamAttr|list|tuple, optional): To specify the weight parameter property
            for FFN second linear. For FFN second linear weight, if it is a list/tuple, `attrs[0]`
            would be used as `attr` for transformer layer 0, and `attrs[1]` would be used as
            `attr` for transformer layer 1,etc. Otherwise, all layers both use it as
            `attr` to create parameters. Default: None, which means the default weight
            parameter property is used. See usage for details in :code:`ParamAttr`.
        ffn2_bias_attrs(ParamAttr|list|tuple|bool, optional): To specify the bias parameter property
            for FFN second linear. For FFN second linear bias, if it is a list/tuple, `attrs[0]`
            would be used as `attr` for transformer layer 0, and `attrs[1]` would be used as
            `attr` for transformer layer 1,etc. Otherwise, all layers both use it as
            `attr` to create parameters. The `False` value means the corresponding layer would
            not have trainable bias parameter. Default: None, which means the default bias
            parameter property is used. See usage for details in :code:`ParamAttr`.
        epsilon (float, optional): Small float value added to denominator of the layer_norm to
            avoid dividing by zero. Default: 1e-05.
        num_layers (int, optional): The number of layers of the transformer. If `qkv_weight_attrs`
            is a list or tuple, the number of layers is obtained from `qkv_weight_attrs`. num_layers
            only takes effect when `qkv_weight_attrs` is not a list or tuple. Default: -1.
        nranks (int, optional): Distributed tensor model parallel nranks. Default is 1, means not using mp.
        ring_id (int, optional): For distributed tensor model parallel. Default is -1, means not using mp.
        name (str, optional): The default value is None.  Normally there is no need for user to set
            this property. For more information, please refer to :ref:`api_guide_Name`.

    Examples:

        .. code-block:: python

            # required: gpu
            import paddle
            from paddle.incubate.nn import FusedMultiTransformer

            # encoder input: [batch_size, src_len, d_model]
            enc_input = paddle.rand((2, 4, 128))
            # self attention mask: [batch_size, 1, src_len, src_len]
            attn_mask = paddle.rand((2, 1, 4, 4))
            encoder_layers = FusedMultiTransformer(128, 2, 512, num_layers=1)
            enc_output = encoder_layers(enc_input, attn_mask)  # [2, 4, 128]
    """

    def __init__(self,
                 embed_dim,
                 num_heads,
                 dim_feedforward,
                 dropout_rate=0.0,
                 activation="gelu",
                 normalize_before=True,
                 ln_scale_attrs=None,
                 ln_bias_attrs=None,
                 qkv_weight_attrs=None,
                 qkv_bias_attrs=None,
                 linear_weight_attrs=None,
                 linear_bias_attrs=None,
                 ffn_ln_scale_attrs=None,
                 ffn_ln_bias_attrs=None,
                 ffn1_weight_attrs=None,
                 ffn1_bias_attrs=None,
                 ffn2_weight_attrs=None,
                 ffn2_bias_attrs=None,
                 epsilon=1e-5,
                 num_layers=-1,
                 nranks=1,
                 ring_id=-1,
                 name=None):
        super(FusedMultiTransformer, self).__init__()

        assert embed_dim > 0, ("Expected embed_dim to be greater than 0, "
1020
                               "but received {}".format(embed_dim))
1021
        assert num_heads > 0, ("Expected nhead to be greater than 0, "
1022
                               "but received {}".format(num_heads))
1023
        assert dim_feedforward > 0, (
1024
            "Expected dim_feedforward to be greater than 0, but received {}".
1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
            format(dim_feedforward))

        self.normalize_before = normalize_before
        self._dtype = self._helper.get_default_dtype()
        self._epsilon = epsilon
        self._ring_id = ring_id

        self.embed_dim = embed_dim
        self.num_heads = num_heads
        self.head_dim = embed_dim // num_heads
        assert self.head_dim * num_heads == embed_dim, "embed_dim must be divisible by num_heads"

        # tensor model parallel
        if nranks > 1:
            assert ring_id != -1
        assert num_heads % nranks == 0
        assert dim_feedforward % nranks == 0
        num_heads = num_heads // nranks
        dim_feedforward = dim_feedforward // nranks
        self._dim_feedforward = dim_feedforward

        if isinstance(qkv_weight_attrs, (list, tuple)):
            num_layers = len(qkv_weight_attrs)
        assert num_layers > 0

        self.ln_scales, self.ln_biases = [], []
        self.qkv_weights, self.qkv_biases = [], []
        self.linear_weights, self.linear_biases = [], []
        self.ffn_ln_scales, self.ffn_ln_biases = [], []
        self.ffn1_weights, self.ffn1_biases = [], []
        self.ffn2_weights, self.ffn2_biases = [], []

        def get_attr(attrs, idx):
            if isinstance(attrs, (list, tuple)):
                assert len(attrs) == num_layers
                return attrs[idx]
            return attrs

        for i in range(num_layers):
            ln_scale_attr = get_attr(ln_scale_attrs, i)
            ln_bias_attr = get_attr(ln_bias_attrs, i)
            qkv_weight_attr = get_attr(qkv_weight_attrs, i)
            qkv_bias_attr = get_attr(qkv_bias_attrs, i)
            linear_weight_attr = get_attr(linear_weight_attrs, i)
            linear_bias_attr = get_attr(linear_bias_attrs, i)

            ffn_ln_scale_attr = get_attr(ffn_ln_scale_attrs, i)
            ffn_ln_bias_attr = get_attr(ffn_ln_bias_attrs, i)
            ffn1_weight_attr = get_attr(ffn1_weight_attrs, i)
            ffn1_bias_attr = get_attr(ffn1_bias_attrs, i)
            ffn2_weight_attr = get_attr(ffn2_weight_attrs, i)
            ffn2_bias_attr = get_attr(ffn2_bias_attrs, i)

            ln_scale = self.create_parameter(
                attr=ln_scale_attr,
                shape=[embed_dim],
                default_initializer=Constant(value=1.0))
1082 1083 1084
            ln_bias = self.create_parameter(attr=ln_bias_attr,
                                            shape=[embed_dim],
                                            is_bias=True)
1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
            qkv_weight = self.create_parameter(
                shape=[3, num_heads, self.head_dim, embed_dim],
                attr=qkv_weight_attr,
                dtype=self._dtype,
                is_bias=False)
            qkv_bias = self.create_parameter(
                shape=[3, num_heads, self.head_dim],
                attr=qkv_bias_attr,
                dtype=self._dtype,
                is_bias=True)
            linear_weight = self.create_parameter(
                shape=[num_heads * self.head_dim, embed_dim],
                attr=linear_weight_attr,
                dtype=self._dtype,
                is_bias=False)
1100 1101 1102 1103
            linear_bias = self.create_parameter(shape=[embed_dim],
                                                attr=linear_bias_attr,
                                                dtype=self._dtype,
                                                is_bias=True)
1104 1105 1106 1107 1108 1109

            ffn_ln_scale = self.create_parameter(
                shape=[embed_dim],
                attr=ffn_ln_scale_attr,
                is_bias=False,
                default_initializer=Constant(1.0))
1110 1111 1112
            ffn_ln_bias = self.create_parameter(shape=[embed_dim],
                                                attr=ffn_ln_bias_attr,
                                                is_bias=True)
1113 1114 1115 1116 1117
            ffn1_weight = self.create_parameter(
                shape=[embed_dim, dim_feedforward],
                attr=ffn1_weight_attr,
                dtype=self._dtype,
                is_bias=False)
1118 1119 1120 1121
            ffn1_bias = self.create_parameter(shape=[dim_feedforward],
                                              attr=ffn1_bias_attr,
                                              dtype=self._dtype,
                                              is_bias=True)
1122 1123 1124 1125 1126
            ffn2_weight = self.create_parameter(
                shape=[dim_feedforward, embed_dim],
                attr=ffn2_weight_attr,
                dtype=self._dtype,
                is_bias=False)
1127 1128 1129 1130
            ffn2_bias = self.create_parameter(shape=[embed_dim],
                                              attr=ffn2_bias_attr,
                                              dtype=self._dtype,
                                              is_bias=True)
1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219

            # tensor model parallel
            if nranks > 1:
                # column parallel
                _set_var_distributed(qkv_weight)
                _set_var_distributed(qkv_bias)
                _set_var_distributed(ffn1_weight)
                _set_var_distributed(ffn1_bias)
                # row parallel
                _set_var_distributed(linear_weight)
                _set_var_distributed(ffn2_weight)

            self.ln_scales.append(ln_scale)
            self.ln_biases.append(ln_bias)
            self.qkv_weights.append(qkv_weight)
            self.qkv_biases.append(qkv_bias)
            self.linear_weights.append(linear_weight)
            self.linear_biases.append(linear_bias)

            self.ffn_ln_scales.append(ffn_ln_scale)
            self.ffn_ln_biases.append(ffn_ln_bias)
            self.ffn1_weights.append(ffn1_weight)
            self.ffn1_biases.append(ffn1_bias)
            self.ffn2_weights.append(ffn2_weight)
            self.ffn2_biases.append(ffn2_bias)

        self.dropout_rate = dropout_rate
        self.activation = activation
        self.name = name

    def forward(self, src, attn_mask=None, caches=None, time_step=None):
        """
        Applies multi transformer layers on the input.

        Parameters:
            src (Tensor): The input of Transformer layers. It is
                a tensor with shape `[batch_size, sequence_length, d_model]`.
                The data type should be float16 or float32.
            attn_mask (Tensor, optional): A tensor used in multi-head attention
                to prevents attention to some unwanted positions, usually the
                paddings or the subsequent positions. It is a tensor with shape
                `[batch_size, 1, sequence_length, sequence_length]`. It can be
                None when nothing wanted or needed to be prevented attention to.
                Default None.
            caches (list(Tensor)|tuple(Tensor), optional): The cache structure
                tensors for the inference generation model. It is only used for
                inference and should be None for training. The shape is
                `[2, batch_size, num_head, max_seq_len, head_dim]`. Default None.
            time_step (Tensor, optional): The time step tensor for the generation
                model. Which used in decode stage, to represent the time step,
                that is, the real seq_len of CacheKV. The shape is `[1]`, must be
                in CPUPlace. Default None.

        Returns:
            Tensor|tuple: If `caches` is None, return a tensor that has
            the same shape and data type with `src`, representing the output
            of Transformer layers. If `caches` is not None, return the
            tuple (output, caches), which output is the output of
            Transformer layers, caches is inplace with input `caches`.
        """

        if caches is not None:
            assert len(caches) == len(self.qkv_weights)
        out = incubate_f.fused_multi_transformer(
            src,
            self.ln_scales,
            self.ln_biases,
            self.qkv_weights,
            self.qkv_biases,
            self.linear_weights,
            self.linear_biases,
            self.ffn_ln_scales,
            self.ffn_ln_biases,
            self.ffn1_weights,
            self.ffn1_biases,
            self.ffn2_weights,
            self.ffn2_biases,
            pre_layer_norm=self.normalize_before,
            epsilon=self._epsilon,
            cache_kvs=caches,
            time_step=time_step,
            attn_mask=attn_mask,
            dropout_rate=self.dropout_rate,
            activation=self.activation,
            training=self.training,
            mode='upscale_in_train',
            ring_id=self._ring_id,
            name=self.name)
        return out