poolings.py 3.4 KB
Newer Older
1
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
"""

__all__ = [
X
xzl 已提交
18 19
    "BasePoolingType", "MaxPooling", "AvgPooling", "MaxWithMaskPooling",
    "CudnnMaxPooling", "CudnnAvgPooling", "SumPooling", "SquareRootNPooling"
Z
zhangjinchao01 已提交
20 21 22 23 24
]


class BasePoolingType(object):
    """
25
    Base Pooling Type.
L
luotao02 已提交
26 27 28 29 30 31
    Note these pooling types are used for sequence input, not for images.
    Each PoolingType contains one parameter:

    :param name: pooling layer type name used by paddle.
    :type name: basestring

Z
zhangjinchao01 已提交
32
    """
Q
qijun 已提交
33

Z
zhangjinchao01 已提交
34 35 36 37 38 39 40 41 42 43 44 45 46
    def __init__(self, name):
        self.name = name


class MaxPooling(BasePoolingType):
    """
    Max pooling.

    Return the very large values for each dimension in sequence or time steps.

    ..  math::

        max(samples\\_of\\_a\\_sequence)
47 48 49 50

    :param output_max_index: True if output sequence max index instead of max
                             value. None means use default value in proto.
    :type output_max_index: bool|None
Z
zhangjinchao01 已提交
51
    """
Q
qijun 已提交
52

53
    def __init__(self, output_max_index=None):
Z
zhangjinchao01 已提交
54
        BasePoolingType.__init__(self, "max")
55
        self.output_max_index = output_max_index
56 57


X
xzl 已提交
58 59 60 61 62 63 64 65 66 67 68 69 70
class MaxWithMaskPooling(BasePoolingType):
    """
    MaxWithMask pooling.

    Not only return the very large values for each dimension in sequence or time steps,
    but also the location indices of found maxinum values.

    """

    def __init__(self):
        BasePoolingType.__init__(self, "max-pool-with-mask")


71 72 73 74 75
class CudnnMaxPooling(BasePoolingType):
    """
    Cudnn max pooling only support GPU. Return the maxinum value in the
    pooling window.
    """
Q
qijun 已提交
76

77 78 79 80 81 82 83 84 85
    def __init__(self):
        BasePoolingType.__init__(self, "cudnn-max-pool")


class CudnnAvgPooling(BasePoolingType):
    """
    Cudnn average pooling only support GPU. Return the average value in the
    pooling window.
    """
Q
qijun 已提交
86

87 88
    def __init__(self):
        BasePoolingType.__init__(self, "cudnn-avg-pool")
Z
zhangjinchao01 已提交
89

Q
qijun 已提交
90

Z
zhangjinchao01 已提交
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
class AvgPooling(BasePoolingType):
    """
    Average pooling.

    Return the average values for each dimension in sequence or time steps.

    ..  math::

        sum(samples\\_of\\_a\\_sequence)/sample\\_num
    """
    STRATEGY_AVG = "average"
    STRATEGY_SUM = "sum"
    STRATEGY_SQROOTN = "squarerootn"

    def __init__(self, strategy=STRATEGY_AVG):
        BasePoolingType.__init__(self, "average")
        self.strategy = strategy


class SumPooling(AvgPooling):
    """
    Sum pooling.

    Return the sum values of each dimension in sequence or time steps.

    ..  math::

        sum(samples\\_of\\_a\\_sequence)
    """
Q
qijun 已提交
120 121 122

    def __init__(self):
        AvgPooling.__init__(self, AvgPooling.STRATEGY_SUM)
Z
zhangjinchao01 已提交
123 124 125 126 127 128 129 130 131 132 133 134


class SquareRootNPooling(AvgPooling):
    """
    Square Root Pooling.

    Return the square root values of each dimension in sequence or time steps.

    ..  math::

        sum(samples\\_of\\_a\\_sequence)/sqrt(sample\\_num)
    """
Q
qijun 已提交
135 136 137

    def __init__(self):
        AvgPooling.__init__(self, AvgPooling.STRATEGY_SQROOTN)