dist_multi_trainer.cc 6.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <string>
#include <vector>
17
#include "io/fs.h"
18
#include "paddle/fluid/framework/data_feed_factory.h"
D
dongdaxiang 已提交
19
#include "paddle/fluid/framework/data_set.h"
20
#include "paddle/fluid/framework/device_worker_factory.h"
21
#include "paddle/fluid/framework/fleet/fleet_wrapper.h"
22 23 24 25 26
#include "paddle/fluid/framework/trainer.h"

namespace paddle {
namespace framework {

27 28
void DistMultiTrainer::Initialize(const TrainerDesc &trainer_desc,
                                  Dataset *dataset) {
29
  thread_num_ = trainer_desc.thread_num();
30
  SetDataset(dataset);
D
dongdaxiang 已提交
31

32 33 34 35 36 37 38
  dump_fields_path_ = trainer_desc.dump_fields_path();
  dump_converter_ = trainer_desc.dump_converter();
  need_dump_field_ = false;
  if (trainer_desc.dump_fields_size() != 0 && dump_fields_path_ != "") {
    need_dump_field_ = true;
  }
  if (need_dump_field_) {
39
    auto &file_list = dataset->GetFileList();
40 41 42 43
    if (file_list.size() == 0) {
      need_dump_field_ = false;
    }
  }
44 45
  mpi_rank_ = trainer_desc.mpi_rank();
  mpi_size_ = trainer_desc.mpi_size();
T
Thunderbrook 已提交
46
  dump_file_num_ = trainer_desc.dump_file_num();
47
  const std::vector<paddle::framework::DataFeed *> readers =
48
      dataset->GetReaders();
49

50 51
  thread_num_ = readers.size();
  workers_.resize(thread_num_);
52 53 54 55 56
  for (int i = 0; i < trainer_desc.downpour_param().stat_var_names_size();
       i++) {
    need_merge_var_names_.push_back(
        trainer_desc.downpour_param().stat_var_names(i));
  }
57

58 59 60 61
  for (int i = 0; i < thread_num_; ++i) {
    workers_[i] = DeviceWorkerFactory::CreateDeviceWorker(
        trainer_desc.device_worker_name());
    workers_[i]->SetDeviceIndex(i);
D
dongdaxiang 已提交
62
    workers_[i]->SetDataFeed(readers[i]);
63
    workers_[i]->Initialize(trainer_desc);
64
    workers_[i]->SetNeedDump(need_dump_field_);
65 66
  }

D
dongdaxiang 已提交
67
  VLOG(3) << "going to initialize pull dense worker";
68 69
  pull_dense_worker_ = PullDenseWorker::GetInstance();
  pull_dense_worker_->Initialize(trainer_desc);
D
dongdaxiang 已提交
70
  VLOG(3) << "initialize pull dense worker";
71
  SetDebug(trainer_desc.debug());
72 73
}

T
Thunderbrook 已提交
74
void DistMultiTrainer::DumpWork(int tid) {
75
#ifdef _LINUX
T
Thunderbrook 已提交
76 77 78 79 80
  int err_no = 0;
  std::string path = string::format_string(
      "%s/part-%03d-%05d", dump_fields_path_.c_str(), mpi_rank_, tid);

  std::shared_ptr<FILE> fp = fs_open_write(path, &err_no, dump_converter_);
81 82 83 84 85 86
  while (1) {
    std::string out_str;
    if (!queue_->Get(out_str)) {
      break;
    }
    size_t write_count =
T
Thunderbrook 已提交
87
        fwrite_unlocked(out_str.data(), 1, out_str.length(), fp.get());
88 89 90 91
    if (write_count != out_str.length()) {
      VLOG(3) << "dump text failed";
      continue;
    }
T
Thunderbrook 已提交
92
    write_count = fwrite_unlocked("\n", 1, 1, fp.get());
93 94 95 96 97 98 99 100 101 102 103 104 105
    if (write_count != 1) {
      VLOG(3) << "dump text failed";
      continue;
    }
  }
#endif
}

void DistMultiTrainer::InitDumpEnv() {
  queue_ = paddle::framework::MakeChannel<std::string>();
  for (int i = 0; i < thread_num_; ++i) {
    workers_[i]->SetChannelWriter(queue_.get());
  }
T
Thunderbrook 已提交
106 107 108 109 110 111 112 113 114 115 116
  dump_thread_num_ = 1;
  if (dump_file_num_ > mpi_size_) {
    dump_thread_num_ = dump_file_num_ / mpi_size_;
    if (dump_file_num_ % mpi_size_ > mpi_rank_) {
      dump_thread_num_ += 1;
    }
  }
  for (int i = 0; i < dump_thread_num_; i++) {
    dump_thread_.push_back(
        std::thread(std::bind(&DistMultiTrainer::DumpWork, this, i)));
  }
117 118 119 120
}

void DistMultiTrainer::FinalizeDumpEnv() {
  queue_->Close();
T
Thunderbrook 已提交
121 122 123
  for (auto &th : dump_thread_) {
    th.join();
  }
124 125 126
  queue_.reset();
}

127
void DistMultiTrainer::InitOtherEnv(const ProgramDesc &main_program) {
128 129 130
  if (need_dump_field_) {
    InitDumpEnv();
  }
131
  pull_dense_worker_->SetRootScope(root_scope_);
132
  pull_dense_worker_->Start();
D
dongdaxiang 已提交
133
  VLOG(3) << "init other env done.";
134 135
}

136 137 138 139 140 141 142 143 144 145 146 147
void DistMultiTrainer::Run() {
  for (int thidx = 0; thidx < thread_num_; ++thidx) {
    if (!debug_) {
      threads_.push_back(
          std::thread(&DeviceWorker::TrainFiles, workers_[thidx].get()));
    } else {
      threads_.push_back(std::thread(&DeviceWorker::TrainFilesWithProfiler,
                                     workers_[thidx].get()));
    }
  }
}

148 149 150 151
Scope *DistMultiTrainer::GetWorkerScope(int thread_id) {
  return workers_[thread_id]->GetThreadScope();
}

152
void DistMultiTrainer::Finalize() {
153
  for (auto &th : threads_) {
154 155
    th.join();
  }
156
  for (size_t i = 0; i < need_merge_var_names_.size(); i++) {
157 158 159 160 161 162 163 164 165 166 167 168 169
    Variable *root_var = root_scope_->FindVar(need_merge_var_names_[i]);
    if (root_var == nullptr) {
      continue;
    }
    LoDTensor *root_tensor = root_var->GetMutable<LoDTensor>();
    for (int j = 1; j < thread_num_; j++) {
      Scope *cur_thread_scope = workers_[j]->GetThreadScope();
      Variable *thread_var =
          cur_thread_scope->FindVar(need_merge_var_names_[i]);
      LoDTensor *thread_tensor = thread_var->GetMutable<LoDTensor>();
      if (root_tensor->numel() != thread_tensor->numel()) {
        continue;
      }
170 171 172 173 174 175 176 177 178 179 180 181
#define MergeCallback(cpp_type, proto_type)                                    \
  do {                                                                         \
    if (root_tensor->type() == proto_type) {                                   \
      if (thread_tensor->type() != proto_type) {                               \
        VLOG(0) << "Error: thread id=" << j << ", need_merge_var_names_[" << i \
                << "] " << need_merge_var_names_[i]                            \
                << ", root tensor type=" << root_tensor->type()                \
                << ", thread tensor type=" << thread_tensor->type();           \
        exit(-1);                                                              \
      }                                                                        \
      MergeToRootScope<cpp_type>(root_tensor, thread_tensor);                  \
    }                                                                          \
182 183 184 185 186
  } while (0)
      _ForEachDataType_(MergeCallback);
    }
  }

187 188 189
  if (need_dump_field_) {
    FinalizeDumpEnv();
  }
190
  pull_dense_worker_->Stop();
191
  root_scope_->DropKids();
192 193 194 195

  // flush local client push queue
  auto fleet_ptr_ = FleetWrapper::GetInstance();
  fleet_ptr_->ClientFlush();
196 197
}

198 199 200 201 202 203 204 205 206
template <typename T>
void DistMultiTrainer::MergeToRootScope(LoDTensor *root_tensor,
                                        LoDTensor *tensor) {
  T *root_data = root_tensor->data<T>();
  T *data = tensor->data<T>();
  for (int i = 0; i < tensor->numel(); i++) {
    root_data[i] += data[i];
  }
}
207 208
}  // namespace framework
}  // namespace paddle