io.py 44.7 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
import os
T
bug fix  
tangwei12 已提交
18
import errno
D
dzhwinter 已提交
19
import warnings
T
tangwei12 已提交
20 21
import time
import shutil
22
import six
23
from functools import reduce
24

25
from paddle.fluid import layers
X
Xin Pan 已提交
26
from paddle.fluid.executor import Executor
27
from paddle.fluid.evaluator import Evaluator
28
from paddle.fluid.framework import Program, Parameter, default_main_program, default_startup_program, Variable, program_guard
S
sneaxiy 已提交
29 30
from . import reader
from .reader import *
K
fix bug  
Kexin Zhao 已提交
31
from . import core
32 33

__all__ = [
T
tangwei12 已提交
34
    'save_vars', 'save_params', 'save_persistables', 'load_vars', 'load_params',
35
    'load_persistables', 'save_inference_model', 'load_inference_model'
S
sneaxiy 已提交
36
] + reader.__all__
37 38 39


def is_parameter(var):
F
fengjiayi 已提交
40 41
    """
    Check whether the given variable is an instance of Parameter.
42 43

    Args:
F
fengjiayi 已提交
44
        var(Variable): The variable to be checked.
45 46

    Returns:
F
fengjiayi 已提交
47 48 49 50 51 52 53 54
        bool: True if the given `var` is an instance of Parameter,
        False if not.

    Examples:
        .. code-block:: python

            param = fluid.default_main_program().global_block().var('fc.w')
            res = fluid.io.is_parameter(param)
55
    """
56 57 58 59
    return isinstance(var, Parameter)


def is_persistable(var):
F
fengjiayi 已提交
60 61 62 63 64 65 66 67 68 69 70 71 72
    """
    Check whether the given variable is persistable.

    Args:
        var(Variable): The variable to be checked.

    Returns:
        bool: True if the given `var` is persistable
        False if not.

    Examples:
        .. code-block:: python

73
            param = fluid.default_main_program().global_block().var('fc.b')
F
fengjiayi 已提交
74 75
            res = fluid.io.is_persistable(param)
    """
76
    if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
Y
yuyang18 已提交
77 78
            var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
            var.desc.type() == core.VarDesc.VarType.READER:
79
        return False
80 81 82 83 84 85 86 87
    return var.persistable


def _clone_var_in_block_(block, var):
    assert isinstance(var, Variable)
    return block.create_var(
        name=var.name,
        shape=var.shape,
F
fengjiayi 已提交
88
        dtype=var.dtype,
89 90 91 92 93
        type=var.type,
        lod_level=var.lod_level,
        persistable=True)


94 95 96 97 98
def save_vars(executor,
              dirname,
              main_program=None,
              vars=None,
              predicate=None,
99
              filename=None):
100
    """
F
fengjiayi 已提交
101 102
    Save variables to the given directory by executor.

103 104 105 106
    There are two ways to specify variables to be saved: The first way, list
    variables in a list and assign it to the `vars`. The second way, assign the
    `main_program` with an existing program, then all variables in the program
    will be saved. The first way has a higher priority. In other words, if `vars`
F
fengjiayi 已提交
107
    are assigned, the `main_program` and the `predicate` will be ignored.
108

109 110 111
    The `dirname` are used to specify the folder where to save variables.
    If you prefer to save variables in separate files in the folder `dirname`,
    set `filename` None; if you prefer to save all variables in a single file,
F
fengjiayi 已提交
112
    use `filename` to specify it.
113

F
fengjiayi 已提交
114 115 116
    Args:
        executor(Executor): The executor to run for saving variables.
        dirname(str): The directory path.
117 118
        main_program(Program|None): The program whose variables will be saved.
                                    If it is None, the default main program will
F
fengjiayi 已提交
119 120
                                    be used automatically.
                                    Default: None
121
        vars(list[Variable]|None): The list that contains all variables to save.
F
fengjiayi 已提交
122 123
                                   It has a higher priority than the `main_program`.
                                   Default: None
124 125 126 127
        predicate(function|None): If it is not None, only variables in the
                                  `main_program` that makes predicate(variable)==True
                                  will be saved. It only works when we are using the
                                  `main_program` to specify variables (In other words
F
fengjiayi 已提交
128 129
                                  `vars` is None).
                                  Default: None
130
        filename(str|None): The file which to save all variables. If you prefer to save
F
fengjiayi 已提交
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
                            variables separately, set it to None.
                            Default: None

    Returns:
        None

    Raises:
        TypeError: If `main_program` is not an instance of Program nor None.

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"

            # The first usage: using `main_program` to specify variables
            def name_has_fc(var):
                res = "fc" in var.name
                return res

            prog = fluid.default_main_program()
            fluid.io.save_vars(executor=exe, dirname=path, main_program=prog,
C
chengduo 已提交
153
                               vars=None, predicate = name_has_fc)
F
fengjiayi 已提交
154 155 156 157 158 159
            # All variables in `main_program` whose name includes "fc" will be saved.
            # And variables are going to be saved separately.


            # The second usage: using `vars` to specify variables
            var_list = [var_a, var_b, var_c]
160
            fluid.io.save_vars(executor=exe, dirname=path, vars=var_list,
F
fengjiayi 已提交
161 162 163
                               filename="vars_file")
            # var_a, var_b and var_c will be saved. And they are going to be
            # saved in the same file named 'var_file' in the path "./my_paddle_model".
164 165
    """
    if vars is None:
166
        if main_program is None:
Y
Yu Yang 已提交
167
            main_program = default_main_program()
168
        if not isinstance(main_program, Program):
169 170 171 172
            raise TypeError("program should be as Program type or None")

        save_vars(
            executor,
173
            main_program=main_program,
174
            dirname=dirname,
175
            vars=list(filter(predicate, main_program.list_vars())),
176
            filename=filename)
177 178 179
    else:
        save_program = Program()
        save_block = save_program.global_block()
180

181 182 183 184 185
        if main_program is None:
            main_program = default_main_program()
        if not isinstance(main_program, Program):
            raise TypeError("program should be as Program type or None")

186
        save_var_map = {}
187
        for each_var in vars:
188 189 190
            # NOTE: don't save the variable which type is RAW
            if each_var.type == core.VarDesc.VarType.RAW:
                continue
191
            new_var = _clone_var_in_block_(save_block, each_var)
192
            if filename is None:
193 194 195 196 197 198 199 200
                save_block.append_op(
                    type='save',
                    inputs={'X': [new_var]},
                    outputs={},
                    attrs={'file_path': os.path.join(dirname, new_var.name)})
            else:
                save_var_map[new_var.name] = new_var

201
        if filename is not None:
202 203 204 205
            save_var_list = []
            for name in sorted(save_var_map.keys()):
                save_var_list.append(save_var_map[name])

206
            save_block.append_op(
207 208
                type='save_combine',
                inputs={'X': save_var_list},
209
                outputs={},
210
                attrs={'file_path': os.path.join(dirname, filename)})
211

212 213 214
        executor.run(save_program)


215
def save_params(executor, dirname, main_program=None, filename=None):
216
    """
F
fengjiayi 已提交
217 218 219
    This function filters out all parameters from the give `main_program`
    and then save them to the folder `dirname` or the file `filename`.

220 221 222
    Use the `dirname` to specify the saving folder. If you would like to
    save parameters in separate files, set `filename` None; if you would
    like to save all parameters in a single file, use `filename` to specify
F
fengjiayi 已提交
223 224
    the file name.

225 226 227
    NOTICE: Some variables are not Parameter while they are necessary for
    training. So you can NOT save and continue your training just by
    `save_params()` and `load_params()`. Please use `save_persistables()`
F
fengjiayi 已提交
228 229 230 231 232 233 234 235 236
    and `load_persistables()` instead.

    Args:
        executor(Executor): The executor to run for saving parameters.
        dirname(str): The saving directory path.
        main_program(Program|None): The program whose parameters will be
                                    saved. If it is None, the default
                                    main program will be used automatically.
                                    Default: None
237 238
        filename(str|None): The file to save all parameters. If you prefer
                            to save parameters in differnet files, set it
F
fengjiayi 已提交
239 240 241 242 243 244 245 246 247 248 249 250
                            to None.
                            Default: None

    Returns:
        None

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            prog = fluid.default_main_program()
251
            fluid.io.save_params(executor=exe, dirname=param_path,
F
fengjiayi 已提交
252
                                 main_program=None)
253 254 255 256
    """
    save_vars(
        executor,
        dirname=dirname,
257
        main_program=main_program,
258
        vars=None,
259
        predicate=is_parameter,
260
        filename=filename)
261 262


263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
def _save_distributed_persistables(executor, dirname, main_program):
    """
    save_persistables for distributed training.
    the method will do things listed below:
    1.save part of persistable variables on trainer.
    2.receive "remote prefetch variables" from parameter servers and merge them.
    3.save "distributed lookup table" on parameter servers.
    4.receive "optimizer variables" from parameter servers and merge them.

    Args:
        executor(Executor): The executor to run for saving parameters.
        dirname(str): The saving directory path.
        main_program(Program): The program whose parameters will be
                            saved. the main_program must be the trainer_program
                            get after transpiler.

    Returns:
        None

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            t = distribute_transpiler.DistributeTranspiler()
            t.transpile(...)
            train_program = t.get_trainer_program()
            _save_distributed_persistables(executor=exe, dirname=param_path, main_program=train_program)
    """

    def __save_remote_params(executor, dirname, remote_params_map):
        """
        recive params on pserver through rpc.
        if the params are be sliced, will concat them to one, then save it.
        """
        if not remote_params_map:
            return

        prog = Program()
        block = prog.global_block()

        # recv optimize vars from pserver
        for name, remote_params in remote_params_map.items():
            origin_var = None
            is_slice = False
            slice_vars = [0] * len(remote_params)
            slice_var_names = [""] * len(remote_params)
            endpoints = [""] * len(remote_params)

            for idx, optimizer in enumerate(remote_params):
                origin = optimizer.origin
                slice = optimizer.slice
                is_slice = optimizer.is_slice
                block_id = optimizer.block_id
                endpoint = optimizer.endpoint

                if idx == 0:
                    origin_var = block.create_var(
                        name=origin.name,
                        type=origin.type,
                        shape=origin.shape,
                        dtype=origin.dtype,
                        persistable=True)

                slice_var = block.create_var(
                    name="{}.slice.{}".format(slice.name, idx),
                    type=slice.type,
                    shape=slice.shape,
                    dtype=slice.dtype,
                    persistable=True)

                index = block_id if is_slice else idx
                slice_vars[index] = slice_var
                slice_var_names[index] = slice.name
                endpoints[index] = endpoint

            if is_slice:
                block.append_op(
                    type='recv',
                    inputs={"X": []},
                    outputs={"Out": slice_vars},
                    attrs={
                        "epmap": endpoints,
                        "with_barrier": False,
                        "varnames": slice_var_names,
                        "sync_mode": True
                    })
                block.append_op(
                    type='concat',
                    inputs={'X': slice_vars},
                    outputs={'Out': origin_var},
                    attrs={})
            else:
                block.append_op(
                    type='recv',
                    inputs={"X": []},
                    outputs={"Out": [origin_var]},
                    attrs={
                        "epmap": endpoints[:1],
                        "with_barrier": False,
                        "varnames": slice_var_names,
                        "sync_mode": True
                    })
            block.append_op(
                type='save',
                inputs={'X': [origin_var]},
                outputs={},
                attrs={'file_path': os.path.join(dirname, origin_var.name)})
            block.append_op(type='delete_var', inputs={'X': slice_vars})
        executor.run(prog)

    def __save_distributed_lookup_tables(executor, dirname,
                                         distributed_lookup_table, endpoints):
        """
        because the distributed lookup table may too huge to merge and save at one place,
        it will be saved at parameter server independent respectively.

        the save directory is dirname/"__lookup_table__".

        """
        prog = Program()
        block = prog.global_block()

        # if there is lookup table, the trainer 0 will notify all pserver to save.
        lookup_table_filename = os.path.join(dirname, "__lookup_table__")
        attrs = {}
        attrs['epmap'] = endpoints
        attrs['dir'] = lookup_table_filename
        attrs['lookup_table'] = distributed_lookup_table
        block.append_op(
            type='checkpoint_notify', inputs={}, outputs={}, attrs=attrs)
        executor.run(prog)

    def __exclude_vars(exclude_var_names=[]):
        def is_valid(var):
            if var.name in exclude_var_names:
                return False
            if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
                        var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
                        var.desc.type() == core.VarDesc.VarType.READER:
                return False
            return var.persistable

        return is_valid

    if not isinstance(main_program, Program):
        raise ValueError("'main_program' should be an instance of Program.")

    if not main_program._is_distributed:
        raise ValueError(
            "'_save_distributed_persistables' just be designed for distributed training."
        )

    remote_params_map = main_program._parameters_on_pservers.get_distributed_vars_by_vtypes(
        ["Optimizer", "RemotePrefetch"], groupby=True)

    exclude_var_names = []
    if remote_params_map:
        exclude_var_names.extend(remote_params_map.keys())

    if main_program._distributed_lookup_table:
        if isinstance(main_program._distributed_lookup_table, list):
            exclude_var_names.extend(main_program._distributed_lookup_table)
        else:
            exclude_var_names.append(main_program._distributed_lookup_table)

    local_vars = list(
        filter(__exclude_vars(exclude_var_names), main_program.list_vars()))
    save_vars(
        executor, main_program=main_program, dirname=dirname, vars=local_vars)

    if main_program._is_chief:
        if remote_params_map:
            __save_remote_params(executor, dirname, remote_params_map)
        if main_program._distributed_lookup_table:
            __save_distributed_lookup_tables(
                executor, dirname, main_program._distributed_lookup_table,
                main_program._endpoints)


443
def save_persistables(executor, dirname, main_program=None, filename=None):
444
    """
445 446
    This function filters out all variables with `persistable==True` from the
    give `main_program` and then saves these variables to the folder `dirname`
F
fengjiayi 已提交
447 448
    or file `filename`.

449 450 451
    The `dirname` is used to specify the folder where persistable variables
    are going to be saved. If you would like to save variables in separate
    files, set `filename` None; if you would like to save all variables in a
F
fengjiayi 已提交
452 453 454 455 456
    single file, use `filename` to specify the file name.

    Args:
        executor(Executor): The executor to run for saving persistable variables.
        dirname(str): The directory path.
457 458
        main_program(Program|None): The program whose persistbale variables will
                                    be saved. If it is None, the default main
F
fengjiayi 已提交
459 460
                                    program will be used automatically.
                                    Default: None
461
        filename(str|None): The file to saved all variables. If you prefer to
F
fengjiayi 已提交
462 463 464 465 466 467 468 469 470 471 472 473
                            save variables in differnet files, set it to None.
                            Default: None

    Returns:
        None

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            prog = fluid.default_main_program()
474
            fluid.io.save_persistables(executor=exe, dirname=param_path,
F
fengjiayi 已提交
475
                                       main_program=None)
476
    """
477 478 479 480 481 482 483 484 485 486 487 488 489

    if main_program and main_program._is_distributed:
        _save_distributed_persistables(
            executor, dirname=dirname, main_program=main_program)

    else:
        save_vars(
            executor,
            dirname=dirname,
            main_program=main_program,
            vars=None,
            predicate=is_persistable,
            filename=filename)
490 491


492 493 494 495 496
def load_vars(executor,
              dirname,
              main_program=None,
              vars=None,
              predicate=None,
497
              filename=None):
498
    """
F
fengjiayi 已提交
499 500
    Load variables from the given directory by executor.

501 502 503 504
    There are two ways to specify variables to be loaded: The first way, list
    variables in a list and assign it to the `vars`. The second way, assign the
    `main_program` with an existing program, then all variables in the program
    will be loaded. The first way has a higher priority. In other words if `vars`
F
fengjiayi 已提交
505 506
    are assigned, the `main_program` and the `predicate` will be ignored.

507 508 509
    The `dirname` are used to specify the folder where to load variables.
    If variables were saved in separate files in the folder `dirname`,
    set `filename` None; if all variables were saved in a single file,
F
fengjiayi 已提交
510
    use `filename` to specify it.
511

F
fengjiayi 已提交
512 513 514
    Args:
        executor(Executor): The executor to run for loading variables.
        dirname(str): The directory path.
515 516
        main_program(Program|None): The program whose variables will be loaded.
                                    If it is None, the default main program will
F
fengjiayi 已提交
517 518
                                    be used automatically.
                                    Default: None
519
        vars(list[Variable]|None): The list that contains all variables to load.
F
fengjiayi 已提交
520 521
                                   It has a higher priority than the `main_program`.
                                   Default: None
522 523 524 525
        predicate(function|None): If it is not None, only variables in the
                                  `main_program` that makes predicate(variable)==True
                                  will be loaded. It only works when we are using the
                                  `main_program` to specify variables (In other words
F
fengjiayi 已提交
526 527
                                  `vars` is None).
                                  Default: None
528
        filename(str|None): The file which saved all required variables. If variables
F
fengjiayi 已提交
529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547
                            were saved in differnet files, set it to None.
                            Default: None

    Returns:
        None

    Raises:
        TypeError: If `main_program` is not an instance of Program nor None.

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"

            # The first usage: using `main_program` to specify variables
            def name_has_fc(var):
                res = "fc" in var.name
                return res
548

F
fengjiayi 已提交
549 550
            prog = fluid.default_main_program()
            fluid.io.load_vars(executor=exe, dirname=path, main_program=prog,
C
chengduo 已提交
551
                               vars=None, predicate=name_has_fc)
F
fengjiayi 已提交
552 553 554 555 556 557
            # All variables in `main_program` whose name includes "fc" will be loaded.
            # And all the variables are supposed to have been saved in differnet files.


            # The second usage: using `vars` to specify variables
            var_list = [var_a, var_b, var_c]
558
            fluid.io.load_vars(executor=exe, dirname=path, vars=var_list,
F
fengjiayi 已提交
559
                               filename="vars_file")
560
            # var_a, var_b and var_c will be loaded. And they are supposed to haven
F
fengjiayi 已提交
561
            # been saved in the same file named 'var_file' in the path "./my_paddle_model".
562 563
    """
    if vars is None:
564
        if main_program is None:
Y
Yu Yang 已提交
565
            main_program = default_main_program()
566
        if not isinstance(main_program, Program):
567 568 569 570 571
            raise TypeError("program's type should be Program")

        load_vars(
            executor,
            dirname=dirname,
T
tangwei12 已提交
572
            main_program=main_program,
573
            vars=list(filter(predicate, main_program.list_vars())),
574
            filename=filename)
575 576 577
    else:
        load_prog = Program()
        load_block = load_prog.global_block()
578

579 580 581 582 583
        if main_program is None:
            main_program = default_main_program()
        if not isinstance(main_program, Program):
            raise TypeError("program should be as Program type or None")

584
        load_var_map = {}
585 586
        for each_var in vars:
            assert isinstance(each_var, Variable)
T
tangwei12 已提交
587 588
            if each_var.type == core.VarDesc.VarType.RAW:
                continue
589
            new_var = _clone_var_in_block_(load_block, each_var)
590
            if filename is None:
591 592 593 594 595 596 597 598
                load_block.append_op(
                    type='load',
                    inputs={},
                    outputs={'Out': [new_var]},
                    attrs={'file_path': os.path.join(dirname, new_var.name)})
            else:
                load_var_map[new_var.name] = new_var

599
        if filename is not None:
600 601 602 603
            load_var_list = []
            for name in sorted(load_var_map.keys()):
                load_var_list.append(load_var_map[name])

604
            load_block.append_op(
605
                type='load_combine',
606
                inputs={},
607
                outputs={"Out": load_var_list},
608
                attrs={'file_path': os.path.join(dirname, filename)})
609 610 611
        executor.run(load_prog)


612
def load_params(executor, dirname, main_program=None, filename=None):
613
    """
F
fengjiayi 已提交
614
    This function filters out all parameters from the give `main_program`
F
fengjiayi 已提交
615
    and then trys to load these parameters from the folder `dirname` or
F
fengjiayi 已提交
616 617
    the file `filename`.

618 619 620
    Use the `dirname` to specify the folder where parameters were saved. If
    parameters were saved in separate files in the folder `dirname`, set
    `filename` None; if all parameters were saved in a single file, use
F
fengjiayi 已提交
621 622
    `filename` to specify the file name.

623 624 625 626
    NOTICE: Some variables are not Parameter while they are necessary for
    training. So you can NOT save and continue your training just by
    `save_params()` and `load_params()`. Please use `save_persistables()`
    and `load_persistables()` instead.
F
fengjiayi 已提交
627 628 629 630 631 632 633 634

    Args:
        executor(Executor): The executor to run for loading parameters.
        dirname(str): The directory path.
        main_program(Program|None): The program whose parameters will be
                                    loaded. If it is None, the default
                                    main program will be used automatically.
                                    Default: None
635
        filename(str|None): The file which saved all parameters. If parameters
F
fengjiayi 已提交
636 637 638 639 640 641 642 643 644 645 646 647
                            were saved in differnet files, set it to None.
                            Default: None

    Returns:
        None

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            prog = fluid.default_main_program()
648
            fluid.io.load_params(executor=exe, dirname=param_path,
F
fengjiayi 已提交
649
                                main_program=None)
650 651
    """
    load_vars(
652 653 654
        executor,
        dirname=dirname,
        main_program=main_program,
655
        predicate=is_parameter,
656
        filename=filename)
657 658


659
def load_persistables(executor, dirname, main_program=None, filename=None):
660
    """
661 662
    This function filters out all variables with `persistable==True` from the
    give `main_program` and then trys to load these variables from the folder
F
fengjiayi 已提交
663 664
    `dirname` or the file `filename`.

665 666 667
    Use the `dirname` to specify the folder where persistable variables were
    saved. If variables were saved in separate files, set `filename` None;
    if all variables were saved in a single file, use `filename` to specify
F
fengjiayi 已提交
668 669 670 671 672
    the file name.

    Args:
        executor(Executor): The executor to run for loading persistable variables.
        dirname(str): The directory path.
673 674
        main_program(Program|None): The program whose persistbale variables will
                                    be loaded. If it is None, the default main
F
fengjiayi 已提交
675 676
                                    program will be used automatically.
                                    Default: None
677
        filename(str|None): The file which saved all variables. If variables were
F
fengjiayi 已提交
678 679 680 681 682 683 684 685 686 687 688 689
                            saved in differnet files, set it to None.
                            Default: None

    Returns:
        None

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            prog = fluid.default_main_program()
690
            fluid.io.load_persistables(executor=exe, dirname=param_path,
F
fengjiayi 已提交
691
                                       main_program=None)
692
    """
693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820

    if main_program and main_program._is_distributed:
        _load_distributed_persistables(
            executor, dirname=dirname, main_program=main_program)
    else:
        load_vars(
            executor,
            dirname=dirname,
            main_program=main_program,
            predicate=is_persistable,
            filename=filename)


def _load_distributed_persistables(executor, dirname, main_program=None):
    """
    customized load_persistables for distributed training.
    it should be used on parameter server,

    Args:
        executor(Executor): The executor to run for saving parameters.
        dirname(str): The load directory path.
        main_program(Program): The program whose parameters will be
                            loaded. the main_program must be the pserver_program
                            get after transpiler.

    Returns:
        None

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            t = distribute_transpiler.DistributeTranspiler()
            t.transpile(...)
            pserver_prog = t.get_pserver_program(...)
            _load_distributed_persistables(executor=exe, dirname=param_path, main_program=pserver_prog)
    """

    def __is_distributed_part_var(varname):
        trainer_idx = varname.find(".trainer_")
        block_idx = varname.find(".block")
        return trainer_idx or block_idx

    def __load_persistable_vars(executor, dirname, need_load_vars):
        load_prog = Program()
        load_block = load_prog.global_block()
        need_delete_vars = []

        for param in need_load_vars:
            origin_var = param.origin
            slice_var = param.slice
            is_slice = param.is_slice
            offset = param.offset

            if is_slice:
                origin = load_block.create_var(
                    name="{}.load".format(origin_var.name),
                    type=origin_var.type,
                    shape=origin_var.shape,
                    dtype=origin_var.dtype,
                    persistable=True)

                load_block.append_op(
                    type='load',
                    inputs={},
                    outputs={'Out': [origin]},
                    attrs={
                        'file_path': os.path.join(dirname, origin_var.name)
                    })

                slice = load_block.create_var(
                    name=slice_var.name,
                    type=slice_var.type,
                    shape=slice_var.shape,
                    dtype=slice_var.dtype,
                    persistable=True)

                dim1_flatten = reduce(lambda x, y: x * y, slice.shape[1:])
                start = int(offset / dim1_flatten)
                end = int(offset / dim1_flatten + slice.shape[0])

                load_block.append_op(
                    type="slice",
                    inputs={'Input': origin},
                    outputs={'Out': slice},
                    attrs={'axes': [0],
                           'starts': [start],
                           'ends': [end]})

                need_delete_vars.append(origin)
            else:
                origin = load_block.create_var(
                    name="{}".format(origin_var.name),
                    type=origin_var.type,
                    shape=origin_var.shape,
                    dtype=origin_var.dtype,
                    persistable=True)
                load_block.append_op(
                    type='load',
                    inputs={},
                    outputs={'Out': [origin]},
                    attrs={
                        'file_path': os.path.join(dirname, origin_var.name)
                    })

        load_block.append_op(
            type='delete_var',
            inputs={'X': need_delete_vars}, )

        executor.run(load_prog)

    if not isinstance(main_program, Program):
        raise ValueError("'main_program' should be an instance of Program.")

    if not main_program._is_distributed:
        raise ValueError(
            "'_load_distributed_persistables' just be designed for distributed training."
        )

    if not main_program._ps_endpoint:
        raise ValueError(
            "'_load_distributed_persistables' need current_endpoint set in DistributeTranspiler.transpile"
        )

    need_load_vars = main_program._parameters_on_pservers.get_distributed_vars_by_ep(
        main_program._ps_endpoint)
    __load_persistable_vars(executor, dirname, need_load_vars)
821 822


823 824 825
def prepend_feed_ops(inference_program,
                     feed_target_names,
                     feed_holder_name='feed'):
Q
Qiao Longfei 已提交
826 827 828
    if len(feed_target_names) == 0:
        return

K
Kexin Zhao 已提交
829 830
    global_block = inference_program.global_block()
    feed_var = global_block.create_var(
831 832 833
        name=feed_holder_name,
        type=core.VarDesc.VarType.FEED_MINIBATCH,
        persistable=True)
K
Kexin Zhao 已提交
834

835
    for i, name in enumerate(feed_target_names):
K
fix bug  
Kexin Zhao 已提交
836
        out = global_block.var(name)
W
Wu Yi 已提交
837
        global_block._prepend_op(
K
Kexin Zhao 已提交
838 839
            type='feed',
            inputs={'X': [feed_var]},
K
fix bug  
Kexin Zhao 已提交
840
            outputs={'Out': [out]},
K
Kexin Zhao 已提交
841 842 843
            attrs={'col': i})


844 845 846
def append_fetch_ops(inference_program,
                     fetch_target_names,
                     fetch_holder_name='fetch'):
K
Kexin Zhao 已提交
847 848
    global_block = inference_program.global_block()
    fetch_var = global_block.create_var(
849 850 851
        name=fetch_holder_name,
        type=core.VarDesc.VarType.FETCH_LIST,
        persistable=True)
K
Kexin Zhao 已提交
852

853
    for i, name in enumerate(fetch_target_names):
K
Kexin Zhao 已提交
854 855 856 857 858 859 860
        global_block.append_op(
            type='fetch',
            inputs={'X': [name]},
            outputs={'Out': [fetch_var]},
            attrs={'col': i})


861 862 863 864
def save_inference_model(dirname,
                         feeded_var_names,
                         target_vars,
                         executor,
865
                         main_program=None,
866
                         model_filename=None,
867 868
                         params_filename=None,
                         export_for_deployment=True):
869
    """
F
fengjiayi 已提交
870 871 872 873 874
    Prune the given `main_program` to build a new program especially for inference,
    and then save it and all related parameters to given `dirname` by the `executor`.

    Args:
        dirname(str): The directory path to save the inference model.
875
        feeded_var_names(list[str]): Names of variables that need to be feeded data
F
fengjiayi 已提交
876
                                     during inference.
877
        target_vars(list[Variable]): Variables from which we can get inference
F
fengjiayi 已提交
878 879
                                     results.
        executor(Executor): The executor that saves the inference model.
880 881
        main_program(Program|None): The original program, which will be pruned to
                                    build the inference model. If is setted None,
F
fengjiayi 已提交
882 883
                                    the default main program will be used.
                                    Default: None.
884 885
        model_filename(str|None): The name of file to save the inference program
                                  itself. If is setted None, a default filename
F
fengjiayi 已提交
886
                                  `__model__` will be used.
887 888
        params_filename(str|None): The name of file to save all related parameters.
                                   If it is setted None, parameters will be saved
F
fengjiayi 已提交
889
                                   in separate files .
X
Xin Pan 已提交
890 891 892 893 894
        export_for_deployment(bool): If True, programs are modified to only support
                                     direct inference deployment. Otherwise,
                                     more information will be stored for flexible
                                     optimization and re-training. Currently, only
                                     True is supported.
895

F
fengjiayi 已提交
896 897 898 899 900 901 902 903 904
    Returns:
        None

    Raises:
        ValueError: If `feed_var_names` is not a list of basestring.
        ValueError: If `target_vars` is not a list of Variable.

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
905

F
fengjiayi 已提交
906 907 908 909 910
            exe = fluid.Executor(fluid.CPUPlace())
            path = "./infer_model"
            fluid.io.save_inference_model(dirname=path, feeded_var_names=['img'],
                         target_vars=[predict_var], executor=exe)

911 912 913
            # In this exsample, the function will prune the default main program
            # to make it suitable for infering the `predict_var`. The pruned
            # inference program is going to be saved in the "./infer_model/__model__"
F
fengjiayi 已提交
914
            # and parameters are going to be saved in separate files under folder
915
            # "./infer_model".
916 917

    """
M
minqiyang 已提交
918
    if isinstance(feeded_var_names, six.string_types):
F
fengjiayi 已提交
919
        feeded_var_names = [feeded_var_names]
X
Xin Pan 已提交
920
    elif export_for_deployment:
Q
Qiao Longfei 已提交
921
        if len(feeded_var_names) > 0:
922
            # TODO(paddle-dev): polish these code blocks
Q
Qiao Longfei 已提交
923
            if not (bool(feeded_var_names) and all(
M
minqiyang 已提交
924
                    isinstance(name, six.string_types)
925
                    for name in feeded_var_names)):
M
minqiyang 已提交
926
                raise ValueError("'feed_var_names' should be a list of str.")
F
fengjiayi 已提交
927 928

    if isinstance(target_vars, Variable):
F
fengjiayi 已提交
929
        target_vars = [target_vars]
X
Xin Pan 已提交
930
    elif export_for_deployment:
931 932
        if not (bool(target_vars) and
                all(isinstance(var, Variable) for var in target_vars)):
F
fengjiayi 已提交
933 934
            raise ValueError("'target_vars' should be a list of Variable.")

935
    if main_program is None:
Y
Yu Yang 已提交
936
        main_program = default_main_program()
D
dzhwinter 已提交
937
        if main_program._is_mem_optimized:
D
dzhwinter 已提交
938 939 940 941 942 943
            warnings.warn(
                "save_inference_model must put before you call memory_optimize. \
                                            the memory_optimize will modify the original program, \
                                            is not suitable for saving inference model \
                                            we save the original program as inference model.",
                RuntimeWarning)
X
Xin Pan 已提交
944

945 946 947 948 949 950 951 952 953 954 955
    # fix the bug that the activation op's output as target will be pruned.
    # will affect the inference performance.
    # TODO(Superjomn) add an IR pass to remove 1-scale op.
    with program_guard(main_program):
        uniq_target_vars = []
        for var in target_vars:
            if isinstance(var, Variable):
                var1 = layers.scale(var, 1.)
            uniq_target_vars.append(var1)
        target_vars = uniq_target_vars

956 957
    # when a pserver and a trainer running on the same machine, mkdir may conflict
    try:
958
        os.makedirs(dirname)
959 960 961 962
    except OSError as e:
        if e.errno != errno.EEXIST:
            raise

X
Xin Pan 已提交
963 964 965 966 967
    if model_filename is not None:
        model_basename = os.path.basename(model_filename)
    else:
        model_basename = "__model__"
    model_basename = os.path.join(dirname, model_basename)
968

X
Xin Pan 已提交
969 970 971 972
    # When export_for_deployment is true, we modify the program online so that
    # it can only be loaded for inference directly. If it's false, the whole
    # original program and related meta are saved so that future usage can be
    # more flexible.
973 974 975

    origin_program = main_program.clone()

X
Xin Pan 已提交
976
    if export_for_deployment:
X
Xin Pan 已提交
977 978
        main_program = main_program.clone()
        global_block = main_program.global_block()
979
        need_to_remove_op_index = []
X
Xin Pan 已提交
980 981 982
        for i, op in enumerate(global_block.ops):
            op.desc.set_is_target(False)
            if op.type == "feed" or op.type == "fetch":
983 984 985 986 987
                need_to_remove_op_index.append(i)

        for index in need_to_remove_op_index[::-1]:
            global_block._remove_op(index)

X
Xin Pan 已提交
988
        main_program.desc.flush()
X
Xin Pan 已提交
989

X
Xin Pan 已提交
990 991
        main_program = main_program._prune(targets=target_vars)
        main_program = main_program._inference_optimize(prune_read_op=True)
X
Xin Pan 已提交
992 993
        fetch_var_names = [v.name for v in target_vars]

X
Xin Pan 已提交
994 995 996 997 998
        prepend_feed_ops(main_program, feeded_var_names)
        append_fetch_ops(main_program, fetch_var_names)

        with open(model_basename, "wb") as f:
            f.write(main_program.desc.serialize_to_string())
X
Xin Pan 已提交
999 1000 1001
    else:
        # TODO(panyx0718): Save more information so that it can also be used
        # for training and more flexible post-processing.
X
Xin Pan 已提交
1002 1003
        with open(model_basename + ".main_program", "wb") as f:
            f.write(main_program.desc.serialize_to_string())
T
tangwei12 已提交
1004

1005 1006
    main_program._copy_dist_param_info_from(origin_program)

X
fix  
Xin Pan 已提交
1007 1008
    if params_filename is not None:
        params_filename = os.path.basename(params_filename)
1009

X
fix  
Xin Pan 已提交
1010 1011
    save_persistables(executor, dirname, main_program, params_filename)

1012

1013 1014 1015
def load_inference_model(dirname,
                         executor,
                         model_filename=None,
T
tangwei12 已提交
1016 1017
                         params_filename=None,
                         pserver_endpoints=None):
1018 1019 1020
    """
    Load inference model from a directory

F
fengjiayi 已提交
1021 1022 1023 1024
    Args:
        dirname(str): The directory path
        executor(Executor): The executor to run for loading inference model.
        model_filename(str|None): The name of file to load inference program.
1025
                                  If it is None, the default filename
F
fengjiayi 已提交
1026 1027 1028
                                  '__model__' will be used.
                                  Default: None
        params_filename(str|None): The name of file to load all parameters.
1029 1030 1031
                                   It is only used for the case that all
                                   parameters were saved in a single binary
                                   file. If parameters were saved in separate
F
fengjiayi 已提交
1032
                                   files, set it as 'None'.
1033 1034 1035 1036
        pserver_endpoints(list|None): This only need by distributed inference.
                                    When use distributed look up table in training,
                                    We also need it in inference.The parameter is
                                    a list of pserver endpoints.
F
fengjiayi 已提交
1037 1038 1039

    Returns:
        tuple: The return of this function is a tuple with three elements:
1040 1041 1042 1043 1044
        (program, feed_target_names, fetch_targets). The `program` is a
        Program, it's the program for inference. The `feed_target_names` is
        a list of str, it contains Names of variables that need to feed
        data in the inference program. The `fetch_targets` is a list of
        Variable. It contains variables from which we can get inference
F
fengjiayi 已提交
1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
        results.

    Raises:
        ValueError: If `dirname` is not a existing directory.

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            path = "./infer_model"
1055
            endpoints = ["127.0.0.1:2023","127.0.0.1:2024"]
1056
            [inference_program, feed_target_names, fetch_targets] =
F
fengjiayi 已提交
1057 1058 1059 1060 1061
                fluid.io.load_inference_model(dirname=path, executor=exe)
            results = exe.run(inference_program,
                          feed={feed_target_names[0]: tensor_img},
                          fetch_list=fetch_targets)

1062 1063 1064
            # if we need lookup table, we will use:
            fluid.io.load_inference_model(dirname=path, executor=exe, pserver_endpoints=endpoints)

1065 1066 1067 1068 1069
            # In this exsample, the inference program was saved in the
            # "./infer_model/__model__" and parameters were saved in
            # separate files in ""./infer_model".
            # After getting inference program, feed target names and
            # fetch targets, we can use an Executor to run the inference
F
fengjiayi 已提交
1070
            # program to get the inference result.
1071

1072 1073 1074 1075
    """
    if not os.path.isdir(dirname):
        raise ValueError("There is no directory named '%s'", dirname)

1076 1077
    if model_filename is not None:
        model_filename = os.path.basename(model_filename)
1078
    else:
1079 1080 1081 1082 1083
        model_filename = "__model__"
    model_filename = os.path.join(dirname, model_filename)

    if params_filename is not None:
        params_filename = os.path.basename(params_filename)
1084

1085
    with open(model_filename, "rb") as f:
1086 1087
        program_desc_str = f.read()

1088
    program = Program.parse_from_string(program_desc_str)
X
Xin Pan 已提交
1089
    if not core._is_program_version_supported(program._version()):
X
version  
Xin Pan 已提交
1090 1091 1092
        raise ValueError("Unsupported program version: %d\n" %
                         program._version())
    # Binary data also need versioning.
1093
    load_persistables(executor, dirname, program, params_filename)
1094

T
tangwei12 已提交
1095
    if pserver_endpoints:
T
tangwei12 已提交
1096
        program = _endpoints_replacement(program, pserver_endpoints)
T
tangwei12 已提交
1097

1098 1099
    feed_target_names = program.desc.get_feed_target_names()
    fetch_target_names = program.desc.get_fetch_target_names()
1100 1101 1102 1103 1104
    fetch_targets = [
        program.global_block().var(name) for name in fetch_target_names
    ]

    return [program, feed_target_names, fetch_targets]
X
xuwei06 已提交
1105 1106


T
tangwei12 已提交
1107 1108 1109
def _endpoints_replacement(program, endpoints):
    ENDPOINT_MAP = "epmap"
    for op in program.global_block().ops:
T
tangwei12 已提交
1110 1111
        if op.has_attr(ENDPOINT_MAP):
            op.set_attr(ENDPOINT_MAP, endpoints)
T
fix  
tangwei12 已提交
1112
    program._sync_with_cpp()
T
tangwei12 已提交
1113
    return program
T
tangwei12 已提交
1114 1115


X
xuwei06 已提交
1116 1117
def get_parameter_value(para, executor):
    """
F
fengjiayi 已提交
1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
    Get the LoDTensor value of the given parameter.

    Args:
        para(Parameter): The parameter to get value from.
        executor(Executor): The executor to run for retrieving the value.

    Returns:
        numpy.array: The given parameter's values.

    Raises:
        AssertionError: If the `para` is not an instance of Parameter.
X
xuwei06 已提交
1129

F
fengjiayi 已提交
1130 1131
    Examples:
        .. code-block:: python
X
xuwei06 已提交
1132

F
fengjiayi 已提交
1133 1134 1135
            exe = fluid.Executor(fluid.CPUPlace())
            param = fluid.default_main_program().global_block().var('fc.w')
            p = fluid.io.get_parameter_value(param, exe)
1136

X
xuwei06 已提交
1137
    """
X
xuwei06 已提交
1138 1139
    assert is_parameter(para)

X
xuwei06 已提交
1140 1141 1142 1143 1144 1145 1146 1147
    get_program = Program()
    block = get_program.global_block()
    new_var = _clone_var_in_block_(block, para)
    return executor.run(get_program, feed={}, fetch_list=[new_var])[0]


def get_parameter_value_by_name(name, executor, program=None):
    """
F
fengjiayi 已提交
1148
    Get the LoDTensor value of a certain parameter by its name.
X
xuwei06 已提交
1149

F
fengjiayi 已提交
1150 1151 1152 1153 1154 1155 1156
    Args:
        name(str): The parameter's name.
        executor(Executor): The executor to run for retrieving the value.
        program(Program | None): The program where to find the parameter.
                               If it's set to be None, the function will
                               try to find the parameter in the default
                               main program.
X
xuwei06 已提交
1157

F
fengjiayi 已提交
1158 1159
    Returns:
        numpy.array: The parameter's values.
1160

F
fengjiayi 已提交
1161 1162 1163 1164 1165
    Raises:
        TypeError: If given `name` is not an instance of basestring.
        TypeError: If the parameter with the given name doesn't exist.
        AssertionError: If there is a varibale named `name` in the
                        given program but it is not a Parameter.
1166

F
fengjiayi 已提交
1167 1168 1169 1170 1171
    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            p = fluid.io.get_parameter_value('fc.w', exe)
X
xuwei06 已提交
1172 1173
    """
    if program is None:
Y
Yu Yang 已提交
1174
        program = default_main_program()
X
xuwei06 已提交
1175 1176
    var = program.global_block().var(name)
    return get_parameter_value(var, executor)