imperative.cc 17.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/pybind/imperative.h"
16

17
#include <Python.h>
18 19 20 21
#include <pybind11/chrono.h>
#include <pybind11/complex.h>
#include <pybind11/functional.h>
#include <pybind11/stl.h>
22
#include <memory>
J
Jiabin Yang 已提交
23
#include <string>
24 25
#include <unordered_map>
#include <utility>
J
Jiabin Yang 已提交
26 27
#include <vector>
#include "paddle/fluid/imperative/backward_strategy.h"
28
#include "paddle/fluid/imperative/layer.h"
J
Jiabin Yang 已提交
29
#include "paddle/fluid/imperative/nccl_context.h"
30
#include "paddle/fluid/imperative/profiler.h"
31
#include "paddle/fluid/imperative/tracer.h"
M
minqiyang 已提交
32
#include "paddle/fluid/imperative/type_defs.h"
33

34 35
#include "paddle/fluid/pybind/pybind_boost_headers.h"

36 37 38
namespace paddle {
namespace pybind {

39 40
namespace py = ::pybind11;

41 42 43 44
class Layer : public imperative::Layer {
 public:
  using imperative::Layer::Layer;  // Inherit constructors

45 46 47 48
  std::vector<std::shared_ptr<imperative::VarBase>> Forward(
      const std::vector<std::shared_ptr<imperative::VarBase>> &inputs)
      override {
    PYBIND11_OVERLOAD(std::vector<std::shared_ptr<imperative::VarBase>>, Layer,
J
Jiabin Yang 已提交
49
                      Forward, inputs);  // NOLINT
50 51 52
  }
};

J
Jiabin Yang 已提交
53 54 55
// warper for pyobject to avoid imperative module depend on python
// TODO(jiabin) Add OpBase's pybind interface back to enable backward hook
class PYBIND11_HIDDEN PyCallableObject {
56
 public:
J
Jiabin Yang 已提交
57 58 59 60 61 62 63 64 65 66
  PyCallableObject(std::shared_ptr<py::object> py_obj_ptr)
      : py_obj_ptr_(std::move(py_obj_ptr)) {}
  ~PyCallableObject() {
    py::call_guard<py::gil_scoped_acquire>();
    py_obj_ptr_.reset();
  }
  void operator()() {
    py::call_guard<py::gil_scoped_acquire>();
    py_obj_ptr_->operator()(this);
  }
67

J
Jiabin Yang 已提交
68 69
 private:
  std::shared_ptr<py::object> py_obj_ptr_;
70 71
};

72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
// Function like obj.attr_name in Python.
static PyObject *GetPythonAttribute(PyObject *obj, const char *attr_name) {
  // NOTE(zjl): PyObject_GetAttrString would return nullptr when attr_name
  // is not inside obj, but it would also set the error flag of Python.
  // If the error flag is set in C++, C++ code would not raise Exception,
  // but Python would raise Exception once C++ call ends.
  // To avoid unexpected Exception raised in Python, we check whether
  // attribute exists before calling PyObject_GetAttrString.
  //
  // Caution: PyObject_GetAttrString would increase reference count of PyObject.
  // Developer should call Py_DECREF manually after the attribute is not used.
  if (PyObject_HasAttrString(obj, attr_name)) {
    return PyObject_GetAttrString(obj, attr_name);
  } else {
    return nullptr;
  }
}

template <typename T>
static T PyObjectCast(PyObject *obj) {
  try {
    return py::cast<T>(py::handle(obj));
  } catch (py::cast_error &) {
    PADDLE_THROW("Python object is not type of %s", typeid(T).name());
  }
}

// NOTE(zjl): py::handle is a very light wrapper of PyObject *.
// Unlike py::object, py::handle does not change reference count of PyObject *.
static std::vector<std::shared_ptr<imperative::VarBase>>
GetVarBaseListFromPyHandle(const py::handle &handle) {
  PyObject *py_obj = handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
    return {};
  }

  const char *kIVarField = "_ivar";
  PyObject *py_ivar = GetPythonAttribute(py_obj, kIVarField);
  std::vector<std::shared_ptr<imperative::VarBase>> result;

  if (py_ivar) {  // Variable
    result.emplace_back(
        PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_ivar));
    Py_DECREF(py_ivar);
  } else if (PyList_Check(py_obj)) {  // List of Variable
    size_t len = PyList_GET_SIZE(py_obj);
    result.reserve(len);
    for (size_t i = 0; i < len; ++i) {
      PyObject *py_ivar =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kIVarField);
      PADDLE_ENFORCE_NOT_NULL(py_ivar);
      result.emplace_back(
          PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_ivar));
      Py_DECREF(py_ivar);
    }
  } else if (PyTuple_Check(py_obj)) {  // Tuple of Variable
    size_t len = PyTuple_GET_SIZE(py_obj);
    result.reserve(len);
    for (size_t i = 0; i < len; ++i) {
      PyObject *py_ivar =
          PyObject_GetAttrString(PyTuple_GET_ITEM(py_obj, i), kIVarField);
      PADDLE_ENFORCE_NOT_NULL(py_ivar);
      result.emplace_back(
          PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_ivar));
      Py_DECREF(py_ivar);
    }
  } else {
    PADDLE_THROW(
J
Jiabin Yang 已提交
141
        "unsupported type %s, must be Variable, list[Variable] or "
142 143 144 145 146 147 148
        "tuple[Variable]",
        py::str(handle));
  }

  return result;
}

J
Jiabin Yang 已提交
149
using PyNameVarBaseMap = std::unordered_map<std::string, py::handle>;
150

J
Jiabin Yang 已提交
151 152 153
static imperative::NameVarBaseMap ConvertToNameVarBaseMap(
    const PyNameVarBaseMap &map) {
  imperative::NameVarBaseMap result;
154 155 156 157 158 159
  for (auto &pair : map) {
    auto var_vec = GetVarBaseListFromPyHandle(pair.second);
    if (!var_vec.empty()) {
      result.emplace(pair.first, std::move(var_vec));
    }
  }
J
Jiabin Yang 已提交
160 161 162

  PADDLE_ENFORCE_EQ(PyErr_Occurred() == nullptr, true,
                    py::str(py::handle(PyErr_Occurred())));
163 164 165
  return result;
}

J
Jiabin Yang 已提交
166 167 168 169 170 171 172 173 174 175
static std::string GetTypeName(const imperative::VarBase &var) {
  if (var.Type() == framework::proto::VarType::RAW) {
    return "RAW";
  } else if (!var.Var().IsInitialized()) {
    return "nullptr";
  } else {
    return framework::ToTypeName(var.Var().Type());
  }
}

176
// Bind Methods
J
Jiabin Yang 已提交
177
void BindImperative(py::module *m_ptr) {
178 179 180
  auto &m = *m_ptr;

  py::class_<imperative::detail::BackwardStrategy> backward_strategy(
181 182
      m, "BackwardStrategy", R"DOC(

J
Jiabin Yang 已提交
183
    BackwardStrategy is a descriptor of how to run the backward process.
184

J
Jiabin Yang 已提交
185 186
    **Note**:
        **This API is only avaliable in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **Mode**
187

J
Jiabin Yang 已提交
188 189
    Attribute:
        **sort_sum_gradient**:
190

J
Jiabin Yang 已提交
191
        If framework will sum the gradient by the reverse order of trace. eg. x_var ( :ref:`api_guide_Variable` ) will be the input of multiple OP such as :ref:`api_fluid_layers_scale` , this attr will decide if framework will sum gradient of `x_var` by the reverse order.
L
lujun 已提交
192

J
Jiabin Yang 已提交
193
        By Default: False
L
lujun 已提交
194

J
Jiabin Yang 已提交
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
        Examples:
            .. code-block:: python

                import numpy as np
                import paddle.fluid as fluid

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    x_var = fluid.dygraph.to_variable(x)
                    sums_inputs = []
                    # x_var will be multi-scales' input here
                    for _ in range(10):
                        sums_inputs.append(fluid.layers.scale(x_var))
                    ret2 = fluid.layers.sums(sums_inputs)
                    loss2 = fluid.layers.reduce_sum(ret2)
                    backward_strategy = fluid.dygraph.BackwardStrategy()
                    backward_strategy.sort_sum_gradient = True
                    loss2.backward(backward_strategy)
213
      )DOC");
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
  backward_strategy.def(py::init())
      .def_property("sort_sum_gradient",
                    [](const imperative::detail::BackwardStrategy &self) {
                      return self.sorted_sum_gradient_;
                    },
                    [](imperative::detail::BackwardStrategy &self,
                       bool sorted_sum_gradient) {
                      self.sorted_sum_gradient_ = sorted_sum_gradient;
                    });

  m.def("start_imperative_gperf_profiler",
        []() { imperative::StartProfile(); });

  m.def("stop_imperative_gperf_profiler", []() { imperative::StopProfile(); });

Z
Zeng Jinle 已提交
229 230 231
  m.def("_is_dygraph_debug_enabled",
        []() { return imperative::IsDebugEnabled(); });
  m.def("_dygraph_debug_level", []() { return imperative::GetDebugLevel(); });
232 233 234 235
  m.def("_switch_tracer",
        [](const std::shared_ptr<imperative::Tracer> &tracer) {
          imperative::SetCurrentTracer(tracer);
        });
Z
Zeng Jinle 已提交
236

237
  py::class_<imperative::VarBase, std::shared_ptr<imperative::VarBase>>(
J
Jiabin Yang 已提交
238 239
      m, "VarBase",
      R"DOC()DOC")
Z
Zeng Jinle 已提交
240
      .def_static("_alive_vars", &imperative::VarBase::AliveVarNames)
J
Jiabin Yang 已提交
241 242 243 244
      .def("__init__",
           [](imperative::VarBase &self, const std::string &name,
              framework::proto::VarType::Type type,
              framework::proto::VarType::Type dtype,
245
              const std::vector<int> &dims, bool persistable) {
J
Jiabin Yang 已提交
246 247 248 249 250 251 252 253 254 255
             new (&self) imperative::VarBase(name);
             self.SetPersistable(persistable);
             self.SetType(type);
             self.SetDataType(dtype);
             if (type == framework::proto::VarType::LOD_TENSOR) {
               auto *tensor =
                   self.MutableVar()->GetMutable<framework::LoDTensor>();
               tensor->Resize(framework::make_ddim(dims));
             }
           })
256 257
      .def("_run_backward",
           [](imperative::VarBase &self,
J
Jiabin Yang 已提交
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
              const imperative::detail::BackwardStrategy &bckst,
              const imperative::Tracer &tracer) {
             // TODO(jiabin): when we impl more backward execution we can select
             // them

             imperative::Engine *engine = tracer.GetDefaultEngine();
             VLOG(3) << "Start backward";
             engine->Init(&self, bckst);
             engine->Execute();
             VLOG(3) << "Finish backward";
           },
           py::call_guard<py::gil_scoped_release>())
      .def("_grad_name", &imperative::VarBase::GradVarName)
      .def("_grad_value",
           [](imperative::VarBase &self) {
             return self.MutableGradVar()->Get<framework::LoDTensor>();
           },
           py::return_value_policy::reference)
276 277
      .def("_clear_gradient", &imperative::VarBase::ClearGradient)
      .def("_grad_ivar",
J
Jiabin Yang 已提交
278 279
           [](const imperative::VarBase &self) {
             auto &grad_var = self.GradVarBase();
H
hong 已提交
280 281 282 283
             auto *tensor =
                 grad_var->MutableVar()->GetMutable<framework::LoDTensor>();
             if (grad_var && grad_var->Var().IsInitialized() &&
                 tensor->IsInitialized()) {
J
Jiabin Yang 已提交
284 285 286 287 288 289
               return grad_var;
             } else {
               return std::shared_ptr<imperative::VarBase>(nullptr);
             }
           },
           py::return_value_policy::copy)
290 291
      .def("_copy_to",
           [](const imperative::VarBase &self, const platform::CPUPlace &place,
J
Jiabin Yang 已提交
292 293
              bool blocking) { return self.NewVarBase(place, blocking); },
           py::return_value_policy::copy)
294 295
      .def("_copy_to",
           [](const imperative::VarBase &self, const platform::CUDAPlace &place,
J
Jiabin Yang 已提交
296 297 298
              bool blocking) { return self.NewVarBase(place, blocking); },
           py::return_value_policy::copy)
      .def("value", [](imperative::VarBase &self) { return self.MutableVar(); },
299 300 301
           py::return_value_policy::reference)
      .def_property("name", &imperative::VarBase::Name,
                    &imperative::VarBase::SetName)
J
Jiabin Yang 已提交
302 303 304 305
      .def_property_readonly(
          "shape",
          [](imperative::VarBase &self) {
            if (self.Var().IsType<framework::LoDTensor>()) {
306
              return framework::vectorize<int>(
J
Jiabin Yang 已提交
307 308 309 310 311 312 313 314
                  self.Var().Get<framework::LoDTensor>().dims());
            } else {
              VLOG(2) << "It is meaningless to get shape of variable type "
                      << GetTypeName(self);
              return std::vector<int>();
            }
          })
      .def_property_readonly("type", &imperative::VarBase::Type)
315
      .def_property_readonly("dtype", &imperative::VarBase::DataType)
J
Jiabin Yang 已提交
316
      .def_property("persistable", &imperative::VarBase::Persistable,
317
                    &imperative::VarBase::SetPersistable)
318 319 320
      .def_property("stop_gradient",
                    &imperative::VarBase::OverridedStopGradient,
                    &imperative::VarBase::SetOverridedStopGradient);
321 322 323

  py::class_<imperative::Layer, Layer /* <--- trampoline*/> layer(m, "Layer");
  layer.def(py::init<>())
324 325 326 327 328
      .def("forward",
           [](imperative::Layer &self,
              const std::vector<std::shared_ptr<imperative::VarBase>> &inputs) {
             return self.Forward(inputs);
           });
329

330 331 332 333 334
  py::class_<imperative::jit::ProgramDescTracer>(m, "ProgramDescTracer", "")
      .def("create_program_desc",
           &imperative::jit::ProgramDescTracer::CreateProgramDesc)
      .def("reset", &imperative::jit::ProgramDescTracer::Reset);

335 336 337
  py::class_<imperative::Tracer, std::shared_ptr<imperative::Tracer>>(
      m, "Tracer",
      R"DOC()DOC")
338
      .def("__init__",
J
Jiabin Yang 已提交
339
           [](imperative::Tracer &self) { new (&self) imperative::Tracer(); })
340 341 342
      .def_property("_enable_program_desc_tracing",
                    &imperative::Tracer::IsProgramDescTracingEnabled,
                    &imperative::Tracer::SetEnableProgramDescTracing)
343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
      .def_property("_train_mode", &imperative::Tracer::NoGrad,
                    &imperative::Tracer::SetNoGrad)
      .def_property(
          "_expected_place",
          [](const imperative::Tracer &self) -> py::object {
            return py::cast(self.ExpectedPlace());
          },
          [](imperative::Tracer &self, const py::object &obj) {
            if (py::isinstance<platform::CUDAPlace>(obj)) {
              auto p = obj.cast<platform::CUDAPlace *>();
              self.SetExpectedPlace<platform::CUDAPlace>(*p);
            } else if (py::isinstance<platform::CPUPlace>(obj)) {
              auto p = obj.cast<platform::CPUPlace *>();
              self.SetExpectedPlace<platform::CPUPlace>(*p);
            } else if (py::isinstance<platform::CUDAPinnedPlace>(obj)) {
              auto p = obj.cast<platform::CUDAPinnedPlace *>();
              self.SetExpectedPlace<platform::CUDAPinnedPlace>(*p);
            } else {
              PADDLE_THROW(
                  "Incompatible Place Type: supports CUDAPlace, CPUPlace, "
                  "CUDAPinnedPlace, "
                  "but got Unknown Type!");
            }
          })
367 368 369
      .def("_get_program_desc_tracer",
           &imperative::Tracer::GetProgramDescTracer,
           py::return_value_policy::reference)
M
minqiyang 已提交
370
      .def("trace",
J
Jiabin Yang 已提交
371 372 373 374 375 376
           [](imperative::Tracer &self, const std::string &type,
              const PyNameVarBaseMap &ins, const PyNameVarBaseMap &outs,
              framework::AttributeMap attrs, const platform::CUDAPlace &place,
              bool trace_backward) {
             auto ins_map = ConvertToNameVarBaseMap(ins);
             auto outs_map = ConvertToNameVarBaseMap(outs);
377 378
             {
               py::gil_scoped_release release;
J
Jiabin Yang 已提交
379 380
               self.TraceOp(type, std::move(ins_map), std::move(outs_map),
                            std::move(attrs), place, trace_backward);
381
             }
M
minqiyang 已提交
382
           })
J
Jiabin Yang 已提交
383 384 385 386 387 388 389 390 391 392 393 394 395
      .def("trace",
           [](imperative::Tracer &self, const std::string &type,
              const PyNameVarBaseMap &ins, const PyNameVarBaseMap &outs,
              framework::AttributeMap attrs, const platform::CPUPlace &place,
              bool trace_backward) {
             auto ins_map = ConvertToNameVarBaseMap(ins);
             auto outs_map = ConvertToNameVarBaseMap(outs);
             {
               py::gil_scoped_release release;
               self.TraceOp(type, std::move(ins_map), std::move(outs_map),
                            std::move(attrs), place, trace_backward);
             }
           });
396 397

  // define parallel context
398 399 400
  py::class_<imperative::ParallelStrategy> parallel_strategy(
      m, "ParallelStrategy", "");
  parallel_strategy.def(py::init())
401 402
      .def_property(
          "nranks",
403 404
          [](const imperative::ParallelStrategy &self) { return self.nranks_; },
          [](imperative::ParallelStrategy &self, int nranks) {
405 406 407
            self.nranks_ = nranks;
          })
      .def_property("local_rank",
408
                    [](const imperative::ParallelStrategy &self) {
409 410
                      return self.local_rank_;
                    },
411
                    [](imperative::ParallelStrategy &self, int local_rank) {
412 413 414 415
                      self.local_rank_ = local_rank;
                    })
      .def_property(
          "trainer_endpoints",
416
          [](const imperative::ParallelStrategy &self) {
417 418
            return self.trainer_endpoints_;
          },
419
          [](imperative::ParallelStrategy &self, std::vector<std::string> eps) {
420 421 422
            self.trainer_endpoints_ = eps;
          })
      .def_property("current_endpoint",
423
                    [](const imperative::ParallelStrategy &self) {
424 425
                      return self.current_endpoint_;
                    },
426 427
                    [](imperative::ParallelStrategy &self,
                       const std::string &ep) { self.current_endpoint_ = ep; });
428
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
429 430
  py::class_<imperative::NCCLParallelContext> nccl_ctx(m,
                                                       "NCCLParallelContext");
431 432

  nccl_ctx
433 434 435
      .def(py::init<const imperative::ParallelStrategy &,
                    const platform::CUDAPlace &>())
      .def("init", [](imperative::NCCLParallelContext &self) { self.Init(); });
436
#endif
437 438 439 440
}

}  // namespace pybind
}  // namespace paddle