dygraph_grad_maker.h 4.9 KB
Newer Older
H
hong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include <memory>
#include <string>
#include <unordered_map>
#include <vector>

#include "paddle/fluid/imperative/layer.h"
#include "paddle/fluid/imperative/type_defs.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/macros.h"

namespace paddle {
namespace imperative {

class GradOpBaseMakerBase {
 public:
  explicit GradOpBaseMakerBase(const OpBase* fw_op_base,
                               const NameVarBaseMap& var_base_map_in,
                               const NameVarBaseMap& var_base_map_out)
      : fw_op_base_(fw_op_base),
        var_base_map_in_(var_base_map_in),
        var_base_map_out_(var_base_map_out) {}

  virtual ~GradOpBaseMakerBase() = default;
  virtual std::vector<std::unique_ptr<OpBase>> operator()() const = 0;

  std::vector<std::shared_ptr<VarBase>> InputGrad(
      const std::string& name, bool drop_empty_grad = true) const {
    return GetVarBaseList(name, true, true);
  }

  std::vector<std::shared_ptr<VarBase>> OutputGrad(
      const std::string& name) const {
    return GetVarBaseList(name, true, false);
  }

  std::vector<std::shared_ptr<VarBase>> Input(const std::string name) const {
    return GetVarBaseList(name, false, true);
  }

  std::vector<std::shared_ptr<VarBase>> Output(const std::string& name) const {
    return GetVarBaseList(name, false, false);
  }

  std::vector<std::shared_ptr<VarBase>> Empty() const { return {}; }

  std::vector<std::string> InputNames() const {
    std::vector<std::string> vec_temp;
    vec_temp.reserve(var_base_map_in_.size());
    for (auto& it : var_base_map_in_) {
      vec_temp.emplace_back(it.first);
    }

    return vec_temp;
  }

  std::vector<std::string> OutputNames() const {
    std::vector<std::string> vec_temp;
    vec_temp.reserve(var_base_map_out_.size());
    for (auto& it : var_base_map_out_) {
      vec_temp.emplace_back(it.first);
    }

    return vec_temp;
  }

  const std::unordered_map<std::string, framework::Attribute>& Attrs() const {
    return fw_op_base_->Attrs();
  }

  const framework::Attribute& GetAttr(const std::string& name) const {
    auto& map = fw_op_base_->Attrs();
    auto it = map.find(name);
    PADDLE_ENFORCE(it != map.end(),
                   "Cannot find attribute [%s] in operator [%s]", name,
                   fw_op_base_->Type());

    return it->second;
  }

  template <typename T>
  inline const T& Attr(const std::string& name) const {
    return boost::get<T>(GetAttr(name));
  }

  std::string ForwardOpType() const { return fw_op_base_->Type(); }

 protected:
  bool HasInput(const std::string& name) const {
    auto it = var_base_map_in_.find(name);

    return it != var_base_map_in_.end();
  }

110 111 112 113 114 115
  bool HasOutput(const std::string name) const {
    auto it = var_base_map_out_.find(name);

    return it != var_base_map_out_.end();
  }

H
hong 已提交
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
 private:
  std::vector<std::shared_ptr<VarBase>> GetVarBaseList(const std::string& name,
                                                       bool is_grad,
                                                       bool is_input) const {
    const NameVarBaseMap& data_map =
        is_input ? var_base_map_in_ : var_base_map_out_;
    auto iterator = data_map.find(name);

    std::vector<std::shared_ptr<imperative::VarBase>> vec_temp;
    if (iterator != data_map.end()) {
      vec_temp.reserve(iterator->second.size());

      for (auto& var_base_temp : iterator->second) {
        if (is_grad) {
          PADDLE_ENFORCE_NOT_NULL(var_base_temp->GradVarBase(),
                                  "VarBase grad of OP [%s] should not be null",
                                  fw_op_base_->Type());
          auto grad_var_base_tmp = var_base_temp->GradVarBase();
          auto* tensor = grad_var_base_tmp->MutableVar()
                             ->GetMutable<framework::LoDTensor>();
          tensor->Resize(
              var_base_temp->Var().Get<framework::LoDTensor>().dims());

          vec_temp.emplace_back(grad_var_base_tmp);
        } else {
          vec_temp.emplace_back(var_base_temp);
        }
      }
    }

    return vec_temp;
  }

 private:
  const OpBase* fw_op_base_;
  const NameVarBaseMap& var_base_map_in_;
  const NameVarBaseMap& var_base_map_out_;

 protected:
  std::vector<framework::BlockDesc*> grad_block_;
};

}  // namespace imperative
}  // namespace paddle