pd_ops.td 5.2 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
#ifndef PD_OPS
#define PD_OPS

include "mlir/Interfaces/InferTypeOpInterface.td"
include "mlir/Interfaces/LoopLikeInterface.td"
include "mlir/IR/OpBase.td"
include "paddle/infrt/dialect/pd_op_base.td"

def PD_FeedOp : PD_Op<"Feed", [NoSideEffect]> {
  let summary = "Feed Op";

  let description = [{
    Feed a tensor into the model.
  }];

  let arguments = (ins);
  let results = (outs PD_Tensor:$out);

  let assemblyFormat = [{
      `(` `)` attr-dict `:` type($out)
  }];
}

def PD_ConstantOp : PD_Op<"Constant", [NoSideEffect, ConstantLike, DeclareOpInterfaceMethods<InferTypeOpInterface>, AllTypesMatch<["value", "output"]>]> {
  let summary = "constant Op";
  let description = [{}];

  let arguments = (ins ElementsAttr:$value);
  let results = (outs PD_Tensor:$output);
  let hasFolder = 1;

  let builders = [
    OpBuilder<"OpBuilder &builder, OperationState &state, Attribute value">,
  ];
}

def PD_AbsOp : PD_Op<"Abs", [NoSideEffect, SameOperandsAndResultType]> {
  let summary = "Computes the absolute value of a tensor";

  let description = [{
  }];

  let arguments = (ins PD_Tensor:$x);
  let results = (outs PD_Tensor:$y);
}

def PD_SqrtOp : PD_Op<"sqrt", [NoSideEffect, SameOperandsAndResultType]> {
  let summary = "Computes the sqrt value of a tensor";

  let description = [{
  }];

  let arguments = (ins PD_Tensor:$x);
  let results = (outs PD_Tensor:$y);
}

def PD_ReluOp : PD_Op<"Relu", [NoSideEffect, SameOperandsAndResultType]> {
  let summary = "Computes the Relu of a tensor";

  let description = [{
  }];

  let arguments = (ins PD_Tensor:$x);
  let results = (outs PD_Tensor:$y);
  let hasCanonicalizer = 1;
}

def PD_Relu6Op : PD_Op<"Relu6", [NoSideEffect, SameOperandsAndResultType]> {
  let summary = "Computes the Relu6 of a tensor";

  let description = [{
  }];

  let arguments = (ins PD_Tensor:$x);
  let results = (outs PD_Tensor:$y);
}

def PD_ElementwiseAdd : PD_Op<"ElementwiseAdd", [NoSideEffect, Commutative, DeclareOpInterfaceMethods<InferTypeOpInterface>]> {
  let summary = "ElementwiseAdd Op";
  let description = [{
  }];

  let arguments = (ins PD_Tensor:$x, PD_Tensor:$y, DefaultValuedAttr<I32Attr, "-1">:$axis);
  let results = (outs PD_Tensor:$out);
  let hasCanonicalizer = 1;
  let hasFolder = 1;
}

def PD_ElementwiseSub : PD_Op<"ElementwiseSub", [NoSideEffect, DeclareOpInterfaceMethods<InferTypeOpInterface>]> {
  let summary = "ElementwiseSub Op";
  let description = [{
  }];

  let arguments = (ins PD_Tensor:$x, PD_Tensor:$y, DefaultValuedAttr<I32Attr, "-1">:$axis);
  let results = (outs PD_Tensor:$out);
}

def PD_ElementwiseMul : PD_Op<"ElementwiseMul", [NoSideEffect, Commutative, DeclareOpInterfaceMethods<InferTypeOpInterface>]> {
  let summary = "ElementwiseMul Op";
  let description = [{
  }];

  let arguments = (ins PD_Tensor:$x, PD_Tensor:$y, DefaultValuedAttr<I32Attr, "-1">:$axis);
  let results = (outs PD_Tensor:$out);
}

def PD_ElementwiseDiv : PD_Op<"ElementwiseDiv", [NoSideEffect, DeclareOpInterfaceMethods<InferTypeOpInterface>]> {
  let summary = "ElementwiseDiv Op";
  let description = [{
  }];

  let arguments = (ins PD_Tensor:$x, PD_Tensor:$y, DefaultValuedAttr<I32Attr, "-1">:$axis);
  let results = (outs PD_Tensor:$out);
}

def PD_MatmulOp : PD_Op<"Matmul", [NoSideEffect]> {
  let summary = "Computes the matrix mulplication result of two tensors";
  let description = [{
  }];

  let arguments = (ins PD_Tensor:$x, PD_Tensor:$y,
                  DefaultValuedAttr<BoolAttr, "false">:$transpose_x,
                  DefaultValuedAttr<BoolAttr, "false">:$transpose_y,
                  DefaultValuedAttr<F32Attr, "1.0">:$alpha);
  let results = (outs PD_Tensor:$out);

  //let hasCanonicalizer = 1;
}

def PD_MulOp : PD_Op<"mul", [NoSideEffect, DeclareOpInterfaceMethods<InferTypeOpInterface>]> {
  let summary = "paddle mul op";
  let description = [{}];

  let arguments = (ins PD_Tensor:$x, PD_Tensor:$y);
  let results = (outs PD_Tensor:$out);

  //let hasCanonicalizer = 1;
}

def PD_Conv2dOp : PD_Op<"conv2d", [NoSideEffect]> {
  let summary = "paddle conv2d operation";
  let description = [{
  }];

  let arguments = (ins PD_Tensor:$Input, PD_Tensor:$Filter, PD_Tensor:$Bias);
  let results = (outs PD_Tensor:$Output);

  //let hasCanonicalizer = 1;
}

def PD_BatchNormOp : PD_Op<"batch_norm", [NoSideEffect]> {
  let summary = "paddle batch_norm operation";
  let description = [{
  }];

  let arguments = (ins PD_Tensor:$X, PD_Tensor:$Scale, PD_Tensor:$Bias,
                   PD_Tensor:$Mean, PD_Tensor:$Variance,
                   DefaultValuedAttr<F32Attr, "1e-05">:$epsilon);
  let results = (outs PD_Tensor:$Y);

  let hasCanonicalizer = 1;
}

def PD_FusedFC : PD_Op<"FC", [NoSideEffect]> {
    let summary = "Computes the Fully Connected result of two tensors";
    let description = [{
    }];

    let arguments = (ins PD_Tensor:$input, PD_Tensor:$w, PD_Tensor:$bias, DefaultValuedAttr<I32Attr, "1">:$in_num_col_dims);
    let results = (outs PD_Tensor:$out);
}

def PD_FusedRepeatedFCRelu : PD_Op<"RepeatedFCRelu", [SameVariadicOperandSize, NoSideEffect]> {
    let summary = "";
    let description = [{ }];

    let arguments = (ins PD_Tensor:$input, Variadic<PD_Tensor>:$w, Variadic<PD_Tensor>:$bias);
    let results = (outs PD_Tensor:$out);
    let hasCanonicalizer = 1;
}

#endif  // PD_OPS