elementwise_add_op.h 3.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
G
gongweibao 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
G
gongweibao 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
G
gongweibao 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
G
gongweibao 已提交
14

F
fengjiayi 已提交
15 16
#pragma once

17
#include "paddle/fluid/framework/eigen.h"
Y
Yi Wang 已提交
18
#include "paddle/fluid/operators/elementwise_op_function.h"
19
#include "paddle/fluid/operators/math/blas.h"
G
gongweibao 已提交
20 21 22 23

namespace paddle {
namespace operators {

C
chengduoZH 已提交
24 25
template <typename T>
struct AddFunctor {
C
chengduoZH 已提交
26
  inline HOSTDEVICE T operator()(T a, T b) const { return a + b; }
C
chengduoZH 已提交
27 28
};

29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
template <typename DeviceContext, typename T>
void default_elementwise_add(const framework::ExecutionContext& ctx,
                             const framework::Tensor* x,
                             const framework::Tensor* y, framework::Tensor* z) {
  int axis = ctx.Attr<int>("axis");
  ElementwiseComputeEx<AddFunctor<T>, DeviceContext, T>(ctx, x, y, axis,
                                                        AddFunctor<T>(), z);
}

template <typename DeviceContext, typename T>
typename std::enable_if<std::is_floating_point<T>::value>::type elementwise_add(
    const framework::ExecutionContext& ctx, const framework::Tensor* x,
    const framework::Tensor* y, framework::Tensor* z) {
  auto eigen_x = framework::EigenVector<T>::Flatten(*x);
  auto eigen_y = framework::EigenVector<T>::Flatten(*y);
  auto eigen_z = framework::EigenVector<T>::Flatten(*z);

  auto blas = math::GetBlas<DeviceContext, T>(ctx);
  blas.VADD(x->numel(), eigen_x.data(), eigen_y.data(), eigen_z.data());
}

template <typename DeviceContext, typename T>
typename std::enable_if<std::is_integral<T>::value>::type elementwise_add(
    const framework::ExecutionContext& ctx, const framework::Tensor* x,
    const framework::Tensor* y, framework::Tensor* z) {
  default_elementwise_add<DeviceContext, T>(ctx, x, y, z);
}

Q
QI JUN 已提交
57
template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
58
class ElementwiseAddKernel : public framework::OpKernel<T> {
G
gongweibao 已提交
59 60
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
C
chengduoZH 已提交
61 62
    using Tensor = framework::Tensor;

63 64 65
    const auto x = ctx.Input<Tensor>("X");
    const auto y = ctx.Input<Tensor>("Y");
    auto z = ctx.Output<Tensor>("Out");
C
chengduoZH 已提交
66
    z->mutable_data<T>(ctx.GetPlace());
67 68 69

    auto dims_equal = x->dims() == y->dims();
    if (platform::is_cpu_place(ctx.GetPlace()) && dims_equal) {
70
      elementwise_add<DeviceContext, T>(ctx, x, y, z);
71
    } else {
72
      default_elementwise_add<DeviceContext, T>(ctx, x, y, z);
73
    }
G
gongweibao 已提交
74 75 76 77
  }
};

template <typename T>
Y
Yu Yang 已提交
78 79
struct IdentityGrad {
  HOSTDEVICE T operator()(T x, T y, T out, T dout) const { return dout; }
G
gongweibao 已提交
80 81
};

Q
QI JUN 已提交
82
template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
83
class ElementwiseAddGradKernel : public framework::OpKernel<T> {
G
gongweibao 已提交
84 85
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
C
chengduoZH 已提交
86 87 88 89 90 91 92 93 94
    using Tensor = framework::Tensor;

    auto* x = ctx.Input<Tensor>("X");
    auto* y = ctx.Input<Tensor>("Y");
    auto* out = ctx.Input<Tensor>("Out");
    auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* dy = ctx.Output<Tensor>(framework::GradVarName("Y"));
    int axis = ctx.Attr<int>("axis");
Y
Yu Yang 已提交
95 96 97
    ElemwiseGradCompute<DeviceContext, T, IdentityGrad<T>, IdentityGrad<T>>(
        ctx, *x, *y, *out, *dout, axis, dx, dy, IdentityGrad<T>(),
        IdentityGrad<T>());
G
gongweibao 已提交
98 99 100 101 102
  }
};

}  // namespace operators
}  // namespace paddle