matmul_v2_op.cc 20.9 KB
Newer Older
S
ShenLiang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
//   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/operators/matmul_v2_op.h"
#include <string>
#include <vector>

19
#include "paddle/fluid/framework/infershape_utils.h"
20 21
#include "paddle/phi/core/infermeta_utils.h"
#include "paddle/phi/infermeta/backward.h"
22

S
ShenLiang 已提交
23 24 25
namespace paddle {
namespace operators {

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
static framework::DDim GetDimForInput(const framework::InferShapeContext& ctx,
                                      const std::string input_name) {
  auto shape = ctx.Attrs().Get<std::vector<int>>("fused_reshape_" + input_name);
  auto axis =
      ctx.Attrs().Get<std::vector<int>>("fused_transpose_" + input_name);
  auto dim = ctx.GetInputDim(input_name);

  PADDLE_ENFORCE_GT(dim.size(), 0,
                    platform::errors::InvalidArgument(
                        "The Input(%s) has not been initialized properly. The "
                        "shape of Input(%s) = [%s].",
                        dim));

  // if mkldnn reshape+transpose+matmul fuse activated
  if (!shape.empty() && !axis.empty()) {
    PADDLE_ENFORCE_GE(
        shape.size(), 2,
        platform::errors::InvalidArgument(
            "shape_%s attribute of MatMulOp was implemented for 2, 3 "
            "or 4 dimensions.",
            input_name));
    PADDLE_ENFORCE_LE(
        shape.size(), 4,
        platform::errors::InvalidArgument(
            "shape_%s attribute of MatMulOp was implemented for 2, 3 "
            "or 4 dimensions.",
            input_name));
    PADDLE_ENFORCE_EQ(
        shape.size(), axis.size(),
        platform::errors::InvalidArgument(
            "Ranks of shape_%s and axis_%s attributes of MatMulOp "
            "must be equal.",
            input_name, input_name));

    int num_negative = std::count(shape.begin(), shape.end(), -1);
    PADDLE_ENFORCE_LE(num_negative, 1,
                      platform::errors::InvalidArgument(
                          "The max number of -1 in fused_reshape_%s is 1 "
                          "but received %d.",
                          input_name, num_negative));

    auto it_zero = std::find(shape.begin(), shape.end(), 0);
    if (it_zero != shape.end()) {
      for (uint64_t i = 0; i < shape.size(); i++) {
        if (shape[i] == 0) {
          PADDLE_ENFORCE_LT(i, dim.size(),
                            platform::errors::InvalidArgument(
                                "The index of 0 in fused_reshape_%s ",
                                "should be less than output dim size, ",
                                "but the index is %d and output dim size is %d",
                                input_name, i, dim.size()));
          shape[i] = dim.at(i);
        }
      }
    }

    // if "-1" is present then one of reshape dims must be infered
    auto it_negative = std::find(shape.begin(), shape.end(), -1);
    if (it_negative != shape.end()) {
      int64_t dim_product = 1;
      for (int i = 0; i < dim.size(); i++) {
        dim_product *= dim.at(i);
      }

      int64_t shape_product = std::accumulate(shape.begin(), shape.end(), -1,
                                              std::multiplies<int>());
      int index = std::distance(shape.begin(), it_negative);
      shape[index] = dim_product / shape_product;
    }

    dim = dim.reshape(shape).transpose(axis);
  }
  return dim;
}

S
ShenLiang 已提交
101 102 103 104 105 106 107 108 109 110
class MatMulV2Op : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override {
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "matmul_v2");
    OP_INOUT_CHECK(ctx->HasInput("Y"), "Input", "Y", "matmul_v2");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "matmul_v2");
    bool trans_x = ctx->Attrs().Get<bool>("trans_x");
    bool trans_y = ctx->Attrs().Get<bool>("trans_y");

111 112
    std::vector<int64_t> dims_x = phi::vectorize(GetDimForInput(*ctx, "X"));
    std::vector<int64_t> dims_y = phi::vectorize(GetDimForInput(*ctx, "Y"));
S
ShenLiang 已提交
113 114
    auto ndims_x = dims_x.size();
    auto ndims_y = dims_y.size();
115 116 117 118 119 120 121 122
    PADDLE_ENFORCE_GT(ndims_x, 0,
                      platform::errors::InvalidArgument(
                          "The Input(X) dims size must be greater than 0,"
                          " but reviced dims size is 0. "));
    PADDLE_ENFORCE_GT(ndims_y, 0,
                      platform::errors::InvalidArgument(
                          "The Input(Y) dims size must be greater than 0,"
                          " but reviced dims size is 0. "));
S
ShenLiang 已提交
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149

    bool x_broadcasted = false, y_broadcasted = false;
    if (ndims_x == 1) {
      dims_x.insert(dims_x.begin(), 1);
      ndims_x = 2;
      x_broadcasted = true;
    }

    if (ndims_y == 1) {
      dims_y.push_back(1);
      ndims_y = 2;
      y_broadcasted = true;
    }

    size_t M, N;
    if (trans_x) {
      M = dims_x[ndims_x - 1];
    } else {
      M = dims_x[ndims_x - 2];
    }
    if (trans_y) {
      N = dims_y[ndims_y - 2];
    } else {
      N = dims_y[ndims_y - 1];
    }

    std::vector<int64_t> new_dims;
150
    if (ndims_x > ndims_y) {
S
ShenLiang 已提交
151
      new_dims.assign(dims_x.begin(), dims_x.end() - 2);
152
    } else if (ndims_x < ndims_y) {
S
ShenLiang 已提交
153
      new_dims.assign(dims_y.begin(), dims_y.end() - 2);
154 155 156 157 158
    } else {
      new_dims.reserve(ndims_x);
      for (size_t i = 0; i < ndims_x - 2; ++i) {
        new_dims.push_back(std::max(dims_x[i], dims_y[i]));
      }
S
ShenLiang 已提交
159 160 161 162 163 164 165 166 167 168 169
    }
    if (!x_broadcasted) {
      new_dims.push_back(M);
    }
    if (!y_broadcasted) {
      new_dims.push_back(N);
    }
    if (x_broadcasted && y_broadcasted) {
      new_dims.push_back(1);
    }

170
    auto ddim_out = phi::make_ddim(new_dims);
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198

#ifdef PADDLE_WITH_MKLDNN
    //  if mkldnn matmul_v2+transpose+reshape fuse activated
    auto reshape_out = ctx->Attrs().Get<std::vector<int>>("fused_reshape_Out");
    auto transpose_out =
        ctx->Attrs().Get<std::vector<int>>("fused_transpose_Out");

    if (!reshape_out.empty() && !transpose_out.empty()) {
      auto reshape_out_size = reshape_out.size();
      auto transpose_out_size = transpose_out.size();
      PADDLE_ENFORCE_EQ(transpose_out_size, 4,
                        platform::errors::InvalidArgument(
                            "transpose_out supported rank is 4, "
                            "received %d",
                            transpose_out_size));
      const std::vector<int> supported_axis{0, 2, 1, 3};
      const bool supported_transpose_axis = std::equal(
          transpose_out.begin(), transpose_out.end(), supported_axis.begin());
      PADDLE_ENFORCE_EQ(
          supported_transpose_axis, true,
          platform::errors::InvalidArgument(
              "supported transpose axis for the fuse are {0, 2, 1, 3}"));
      PADDLE_ENFORCE_EQ(
          reshape_out_size, 3,
          platform::errors::InvalidArgument("reshape_out supported rank is 3, "
                                            "received %d",
                                            reshape_out_size));

199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
      // int num_negative = std::count(reshape_out.begin(), reshape_out.end(),
      // -1);
      // PADDLE_ENFORCE_LE(num_negative, 1,
      //                   platform::errors::InvalidArgument(
      //                       "The max number of -1 in fused_reshape_Out is 1 "
      //                       "but received %d.",
      //                       num_negative));

      // auto it_zero = std::find(reshape_out.begin(), reshape_out.end(), 0);
      // if (it_zero != reshape_out.end()) {
      //   for (uint64_t i = 0; i < reshape_out.size(); i++) {
      //     if (reshape_out[i] == 0) {
      //       PADDLE_ENFORCE_LT(
      //           i, ddim_out.size(),
      //           platform::errors::InvalidArgument(
      //               "The index of 0 in fused_reshape_Out ",
      //               "should be less than output dim size, ",
      //               "but the index is %d and output dim size is %d", i,
      //               ddim_out.size()));
      //       reshape_out[i] = ddim_out.at(i);
      //     }
      //   }
      // }
222 223

      // if "-1" is present then one of reshape dims must be infered
224
      auto it = std::find(reshape_out.begin(), reshape_out.end(), -1);
225 226 227
      if (it != reshape_out.end()) {
        int index = std::distance(reshape_out.begin(), it);

228
        auto ddim_out_vec = phi::vectorize(ddim_out);
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248

        int ddim_out_product =
            std::accumulate(ddim_out_vec.begin(), ddim_out_vec.end(), 1,
                            std::multiplies<int>());
        int reshape_out_product = std::accumulate(
            reshape_out.begin(), reshape_out.end(), -1, std::multiplies<int>());

        reshape_out[index] = ddim_out_product / reshape_out_product;
      }

      framework::DDim shape_out =
          ddim_out.transpose(transpose_out).reshape(reshape_out);
      ctx->SetOutputDim("Out", shape_out);
    } else {
      ctx->SetOutputDim("Out", ddim_out);
    }
#else
    ctx->SetOutputDim("Out", ddim_out);
#endif

S
ShenLiang 已提交
249 250 251 252 253 254
    ctx->ShareLoD("X", /* --> */ "Out");
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
255
    auto input_data_type =
256
        OperatorWithKernel::IndicateOrPromoteVarDataTypes(ctx, "X", "Y");
257 258 259 260 261 262 263 264 265

#ifdef PADDLE_WITH_MKLDNN
    if (this->CanMKLDNNBeUsed(ctx, input_data_type)) {
      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
266 267 268 269 270 271 272
  }

  framework::OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const framework::Tensor& tensor,
      const framework::OpKernelType& expected_kernel_type) const {
    if (framework::IsComplexType(expected_kernel_type.data_type_)) {
      // only promote inputs’s types when contains complex input
273 274 275
      return framework::OpKernelType(
          framework::TransToProtoVarType(tensor.dtype()), tensor.place(),
          tensor.layout());
276
    } else {
277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
#ifdef PADDLE_WITH_MKLDNN
      // When matmul_v2 is first oneDNN op in a chain (there was some non oneDNN
      // op
      // previously)
      // then we also need to rotate shape NHWC -> NCWH
      if ((expected_kernel_type.data_layout_ ==
           framework::DataLayout::kMKLDNN) &&
          (tensor.layout() != framework::DataLayout::kMKLDNN) &&
          paddle::platform::MKLDNNDeviceContext::tls()
                  .get_cur_paddle_data_layout() ==
              framework::DataLayout::kNHWC) {
        return framework::OpKernelType(expected_kernel_type.data_type_,
                                       tensor.place(),
                                       framework::DataLayout::kNHWC);
      }
#endif
293 294 295
      return framework::OpKernelType(expected_kernel_type.data_type_,
                                     tensor.place(), tensor.layout());
    }
S
ShenLiang 已提交
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
  }
};

class MatMulV2OpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "tensor of shape (d0, d1 ... M, K)");
    AddInput("Y", "tensor of shape (d0, d1 ... K, N)");
    AddOutput("Out", "tensor of shape (d0, d1 ... M, N)");
    AddAttr<bool>("trans_x",
                  "Set true to transpose the last two dimensions of X before "
                  "doing multiplication")
        .SetDefault(false);
    AddAttr<bool>("trans_y",
                  "Set true to transpose the last two dimensions of Y before "
                  "doing multiplication")
        .SetDefault(false);
313 314 315 316 317 318 319 320 321 322 323 324
    AddAttr<std::vector<int>>(
        "fused_reshape_Out",
        R"DOC(When MKLDNN matmul_v2_transpose_reshape fuse activated, "
              "it's a shape atribute of fused reshape for `Out` output.)DOC")
        .SetDefault({})
        .AsExtra();
    AddAttr<std::vector<int>>(
        "fused_transpose_Out",
        R"DOC(When MKLDNN matmul_v2_transpose_reshape fuse activated, "
              "it's a axis atribute of fused transpose for `Out` output.)DOC")
        .SetDefault({})
        .AsExtra();
325 326
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
327 328
        .SetDefault(false)
        .AsExtra();
329 330 331 332
    AddAttr<std::string>(
        "mkldnn_data_type",
        "(string, default \"float32\"). Data type of mkldnn kernel")
        .SetDefault("float32")
333 334
        .InEnum({"float32", "bfloat16"})
        .AsExtra();
335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
    AddAttr<std::vector<int>>("fused_reshape_X",
                              R"DOC(Shape of fused reshape of `X` input.)DOC")
        .SetDefault({})
        .AsExtra();
    AddAttr<std::vector<int>>("fused_reshape_Y",
                              R"DOC(Shape of fused reshape of `Y` input.)DOC")
        .SetDefault({})
        .AsExtra();
    AddAttr<std::vector<int>>("fused_transpose_X",
                              R"DOC(Axis of fused transpose of `X` input.)DOC")
        .SetDefault({})
        .AsExtra();
    AddAttr<std::vector<int>>("fused_transpose_Y",
                              R"DOC(Axis of fused transpose of `Y` input.)DOC")
        .SetDefault({})
        .AsExtra();
S
ShenLiang 已提交
351 352 353 354 355 356 357 358 359 360 361 362 363 364
    AddComment(
        R"DOC(Matrix multiplication Out = X * Y. A has shape (d0, d1 ... M, K), 
        B has shape (d0, d1 ... K, N), Out has shape ((d0, d1 ... M, N)). 
        In addition, it also follows the broadcast rule which is similar as
        numpy.matmul.
)DOC");
  }
};

class MatMulV2OpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
C
chentianyu03 已提交
365 366
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
367 368 369 370 371 372 373 374 375 376 377
    auto input_data_type = OperatorWithKernel::IndicateVarDataType(
        ctx, framework::GradVarName("Out"));

#ifdef PADDLE_WITH_MKLDNN
    if (this->CanMKLDNNBeUsed(ctx, input_data_type)) {
      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
C
chentianyu03 已提交
378 379 380 381 382 383 384
  }

  framework::OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const framework::Tensor& tensor,
      const framework::OpKernelType& expected_kernel_type) const {
    if (framework::IsComplexType(expected_kernel_type.data_type_)) {
      // only promote inputs’s types when contains complex input
385 386 387
      return framework::OpKernelType(
          framework::TransToProtoVarType(tensor.dtype()), tensor.place(),
          tensor.layout());
C
chentianyu03 已提交
388 389 390 391 392
    } else {
      return framework::OpKernelType(expected_kernel_type.data_type_,
                                     tensor.place(), tensor.layout());
    }
  }
S
ShenLiang 已提交
393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
};

template <typename T>
class MatMulV2GradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    op->SetType("matmul_v2_grad");
    op->SetInput("X", this->Input("X"));
    op->SetInput("Y", this->Input("Y"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetOutput(framework::GradVarName("Y"), this->InputGrad("Y"));
    op->SetAttrMap(this->Attrs());
  }
};

W
wawltor 已提交
412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
class MatMulV2OpDoubleGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext* context) const override {
    OP_INOUT_CHECK(context->HasInput("X"), "Input", "X", "matmul");
    OP_INOUT_CHECK(context->HasInput("Y"), "Input", "Y", "matmul");
    OP_INOUT_CHECK(context->HasInput("DOut"), "Input", "DOut", "matmul");

    if (context->HasOutput("DX") && context->HasInput("DDY")) {
      context->ShareDim("X", "DX");
    }

    if (context->HasOutput("DY") && context->HasInput("DDX")) {
      context->ShareDim("Y", "DY");
    }

    if (context->HasOutput("DDOut") &&
        (context->HasInput("DDY") || context->HasInput("DDX"))) {
      context->ShareDim("DOut", "DDOut");
    }
  }
};

template <typename T>
class MatMulV2OpDoubleGradMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    op->SetType("matmul_v2_grad_grad");
    op->SetInput("X", this->Input("X"));
    op->SetInput("Y", this->Input("Y"));
    op->SetInput("DOut", this->Input(framework::GradVarName("Out")));
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetInput("DDY", this->OutputGrad(framework::GradVarName("Y")));

    auto ddx = this->OutputGrad(framework::GradVarName("X"));
    auto ddy = this->OutputGrad(framework::GradVarName("Y"));

    if (!ddx.empty() || !ddy.empty()) {
      op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
    }
    op->SetOutput("DX",
                  ddy.empty() ? this->EmptyInputGrad() : this->InputGrad("X"));
    op->SetOutput("DY",
                  ddx.empty() ? this->EmptyInputGrad() : this->InputGrad("Y"));

    op->SetAttrMap(this->Attrs());
  }
};
465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
class MatMulV2OpTripleGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext* context) const override {
    OP_INOUT_CHECK(context->HasInput("X"), "Input", "X",
                   "matmul_v2_triple_grad");
    OP_INOUT_CHECK(context->HasInput("Y"), "Input", "Y",
                   "matmul_v2_triple_grad");
    OP_INOUT_CHECK(context->HasInput("DOut"), "Input", "DOut",
                   "matmul_v2_triple_grad");
    OP_INOUT_CHECK(context->HasInput("DDX"), "Input", "DDX",
                   "matmul_v2_triple_grad");
    OP_INOUT_CHECK(context->HasInput("DDY"), "Input", "DDY",
                   "matmul_v2_triple_grad");
    OP_INOUT_CHECK(context->HasInput("D_DX"), "Input", "D_DX",
                   "matmul_v2_triple_grad");
    OP_INOUT_CHECK(context->HasInput("D_DY"), "Input", "D_DY",
                   "matmul_v2_triple_grad");
    OP_INOUT_CHECK(context->HasInput("D_DDOut"), "Input", "D_DDOut",
                   "matmul_v2_triple_grad");

    if (context->HasOutput("D_X_out")) {
      context->ShareDim("X", "D_X_out");
    }
    if (context->HasOutput("D_Y_out")) {
      context->ShareDim("Y", "D_Y_out");
    }
    if (context->HasOutput("D_DOut_out")) {
      context->ShareDim("DOut", "D_DOut_out");
    }
    if (context->HasOutput("D_DDX_out")) {
      context->ShareDim("X", "D_DDX_out");
    }
    if (context->HasOutput("D_DDY_out")) {
      context->ShareDim("Y", "D_DDY_out");
    }
  }
};

template <typename T>
class MatMulV2OpTripleGradMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    op->SetType("matmul_v2_triple_grad");

    // get input from double grad
    op->SetInput("X", this->Input("X"));
    op->SetInput("Y", this->Input("Y"));
    op->SetInput("DOut", this->Input("DOut"));
    op->SetInput("DDX", this->Input("DDX"));
    op->SetInput("DDY", this->Input("DDY"));
    op->SetInput("D_DX", this->OutputGrad("DX"));
    op->SetInput("D_DY", this->OutputGrad("DY"));
    op->SetInput("D_DDOut", this->OutputGrad("DDOut"));

    // set outputs
    op->SetOutput("D_X_out", this->InputGrad("X"));
    op->SetOutput("D_Y_out", this->InputGrad("Y"));
    op->SetOutput("D_DOut_out", this->InputGrad("DOut"));
    op->SetOutput("D_DDX_out", this->InputGrad("DDX"));
    op->SetOutput("D_DDY_out", this->InputGrad("DDY"));

    op->SetAttrMap(this->Attrs());
  }
};
S
ShenLiang 已提交
535 536 537 538 539 540 541 542
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(matmul_v2, ops::MatMulV2Op, ops::MatMulV2OpMaker,
                  ops::MatMulV2GradOpMaker<paddle::framework::OpDesc>,
                  ops::MatMulV2GradOpMaker<paddle::imperative::OpBase>);

543 544
DECLARE_INFER_SHAPE_FUNCTOR(matmul_v2_grad, MatMulV2GradInferShapeFunctor,
                            PD_INFER_META(phi::GeneralBinaryGradInferMeta));
W
wawltor 已提交
545 546
REGISTER_OPERATOR(matmul_v2_grad, ops::MatMulV2OpGrad,
                  ops::MatMulV2OpDoubleGradMaker<paddle::framework::OpDesc>,
547 548
                  ops::MatMulV2OpDoubleGradMaker<paddle::imperative::OpBase>,
                  MatMulV2GradInferShapeFunctor);
W
wawltor 已提交
549

550 551 552 553 554
REGISTER_OPERATOR(matmul_v2_grad_grad, ops::MatMulV2OpDoubleGrad,
                  ops::MatMulV2OpTripleGradMaker<paddle::framework::OpDesc>,
                  ops::MatMulV2OpTripleGradMaker<paddle::imperative::OpBase>);

REGISTER_OPERATOR(matmul_v2_triple_grad, ops::MatMulV2OpTripleGrad);