mul_mkldnn_op.cc 7.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "mkldnn.hpp"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/operators/mul_op.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/mkldnn_helper.h"

namespace paddle {
namespace operators {

using paddle::framework::Tensor;
using paddle::platform::MKLDNNDeviceContext;

template <typename Format = mkldnn::memory::format>
mkldnn::memory::desc type(const std::vector<int>& dims, Format&& f) {
  return platform::MKLDNNMemDesc(dims, mkldnn::memory::data_type::f32, f);
}

template <typename T>
class MulMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                   "It must use CPUPlace.");

    auto& dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
    auto mkldnn_engine = dev_ctx.GetEngine();

    auto input = ctx.Input<Tensor>("X");
    auto weight = ctx.Input<Tensor>("Y");

    PADDLE_ENFORCE(input->dims().size() & (2 | 4),
                   "Input must be with 2 or 4 dimensions, i.e. NC or NCHW");
    PADDLE_ENFORCE(weight->dims().size() & (2 | 4),
                   "Weights must be with 2 or 4 dimensions, i.e. OI or OIHW");

    std::vector<int> w_tz = paddle::framework::vectorize2int(weight->dims());
    std::vector<int> src_tz = paddle::framework::vectorize2int(input->dims());

    auto src_md =
        src_tz.size() != 2
            ? type(src_tz, mkldnn::memory::format::nchw)
            : type({src_tz[0], src_tz[1]}, mkldnn::memory::format::nc);

    auto dst_md = type({src_tz[0], w_tz[1]}, mkldnn::memory::format::nc);

    auto weights_md =
        src_tz.size() != 2
            ? type({w_tz[1], src_tz[1], src_tz[2], src_tz[3]},
                   mkldnn::memory::format::oihw)
            : type({w_tz[1], src_tz[1]}, mkldnn::memory::format::oi);

    auto output = ctx.Output<Tensor>("Out");
    T* output_data = output->mutable_data<T>(ctx.GetPlace());

    const std::string key = ctx.op().Output("Out");
    const std::string key_fc_pd = key + "@mul_pd";

    const T* input_data = input->data<T>();
    const T* w_data = weight->data<T>();

    auto dst_memory = mkldnn::memory({dst_md, mkldnn_engine}, output_data);

    auto src_memory = mkldnn::memory({src_md, mkldnn_engine},
                                     platform::to_void_cast(input_data));

    auto weights_memory = mkldnn::memory({weights_md, mkldnn_engine},
                                         platform::to_void_cast(w_data));

    auto pd = platform::MKLDNNFwdPrimitiveDesc<mkldnn::inner_product_forward>(
        mkldnn_engine, src_md, weights_md, dst_md);

    dev_ctx.SetBlob(key_fc_pd, pd);

    auto forward = mkldnn::inner_product_forward(*pd, src_memory,
                                                 weights_memory, dst_memory);

    std::vector<mkldnn::primitive> pipeline = {forward};
    mkldnn::stream(mkldnn::stream::kind::eager).submit(pipeline).wait();
  }
};

template <typename T>
class MulMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                   "It must use CPUPlace.");

    auto& dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
    auto mkldnn_engine = dev_ctx.GetEngine();

    const Tensor* input = ctx.Input<Tensor>("X");
    const Tensor* w = ctx.Input<Tensor>("Y");

    const Tensor* out_grad = ctx.Input<Tensor>(framework::GradVarName("Out"));
    Tensor* input_grad = ctx.Output<Tensor>(framework::GradVarName("X"));
    Tensor* w_grad = ctx.Output<Tensor>(framework::GradVarName("Y"));

    const std::string key = ctx.op().Input("Out");
    const std::string key_fc_pd = key + "@mul_pd";

    const T* input_data = input->data<T>();
    const T* w_data = w->data<T>();
    const T* out_grad_data = out_grad->data<T>();
    T* input_grad_data = nullptr;
    T* w_grad_data = nullptr;

    if (input_grad) {
      input_grad_data = input_grad->mutable_data<T>(ctx.GetPlace());
    }
    if (w_grad) {
      w_grad_data = w_grad->mutable_data<T>(ctx.GetPlace());
    }

    std::vector<int> src_tz = paddle::framework::vectorize2int(input->dims());
    std::vector<int> w_tz = paddle::framework::vectorize2int(w->dims());

    auto src_md =
        src_tz.size() != 2
            ? type(src_tz, mkldnn::memory::format::nchw)
            : type({src_tz[0], src_tz[1]}, mkldnn::memory::format::nc);

    auto dst_md = type({src_tz[0], w_tz[1]}, mkldnn::memory::format::nc);

    auto weights_md =
        src_tz.size() != 2
            ? type({w_tz[1], src_tz[1], src_tz[2], src_tz[3]},
                   mkldnn::memory::format::oihw)
            : type({w_tz[1], src_tz[1]}, mkldnn::memory::format::oi);

    auto src_memory = mkldnn::memory({src_md, mkldnn_engine},
                                     platform::to_void_cast(input_data));

    auto dst_memory = mkldnn::memory({dst_md, mkldnn_engine},
                                     platform::to_void_cast(out_grad_data));

    auto weight_memory = mkldnn::memory({weights_md, mkldnn_engine},
                                        platform::to_void_cast(w_data));

    auto pd =
        std::static_pointer_cast<mkldnn::inner_product_forward::primitive_desc>(
            dev_ctx.GetBlob(key_fc_pd));

    PADDLE_ENFORCE(pd != nullptr, "Fail to find pd in device context");

    if (w_grad) {
      auto weights_grad_memory = mkldnn::memory(
          {weights_md, mkldnn_engine}, platform::to_void_cast(w_grad_data));

      auto bwd_weight_pd = platform::MKLDNNBwdPrimitiveDesc<
          mkldnn::inner_product_backward_weights>(mkldnn_engine, *pd, src_md,
                                                  weights_md, dst_md);

      auto bwd_weights_prim = mkldnn::inner_product_backward_weights(
          bwd_weight_pd, src_memory, dst_memory, weights_grad_memory);

      std::vector<mkldnn::primitive> pipeline{bwd_weights_prim};
      mkldnn::stream(mkldnn::stream::kind::eager).submit(pipeline).wait();
    }

    if (input_grad) {
      auto src_grad_memory = mkldnn::memory(
          {src_md, mkldnn_engine}, platform::to_void_cast(input_grad_data));

      auto bwd_data_pd =
          platform::MKLDNNBwdPrimitiveDesc<mkldnn::inner_product_backward_data>(
              mkldnn_engine, *pd, src_md, weights_md, dst_md);

      auto bwd_data_prim = mkldnn::inner_product_backward_data(
          bwd_data_pd, dst_memory, weight_memory, src_grad_memory);

      std::vector<mkldnn::primitive> pipeline{bwd_data_prim};
      mkldnn::stream(mkldnn::stream::kind::eager).submit(pipeline).wait();
    }
  }
};
}  // namespace operators
}  // namespace paddle

REGISTER_OP_KERNEL(mul, MKLDNN, ::paddle::platform::CPUPlace,
                   paddle::operators::MulMKLDNNOpKernel<float>);

REGISTER_OP_KERNEL(mul_grad, MKLDNN, ::paddle::platform::CPUPlace,
                   paddle::operators::MulMKLDNNGradOpKernel<float>);