operator.cc 18.2 KB
Newer Older
Q
Qiao Longfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
D
dzhwinter 已提交
14
#include <gflags/gflags.h>
D
dzhwinter 已提交
15
#include <glog/logging.h>
Q
Qiao Longfei 已提交
16

17
#include <algorithm>
D
dzhwinter 已提交
18

19
#include "paddle/framework/data_transform.h"
D
dzhwinter 已提交
20 21
#include "paddle/framework/executor.h"
#include "paddle/framework/operator.h"
22
#include "paddle/framework/shape_inference.h"
23
#include "paddle/framework/var_type.h"
Q
Qiao Longfei 已提交
24

D
dzhwinter 已提交
25
DECLARE_bool(benchmark);
D
dzhwinter 已提交
26

Q
Qiao Longfei 已提交
27 28 29
namespace paddle {
namespace framework {

30 31 32 33 34 35
std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority = {
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kCUDNN),
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kPlain),
    std::make_tuple(platform::CPUPlace(), LibraryType::kMKLDNN),
    std::make_tuple(platform::CPUPlace(), LibraryType::kPlain),
};
D
dzhwinter 已提交
36

37 38
static DDim GetDims(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
Q
qiaolongfei 已提交
39 40
  if (var == nullptr) {
    return DDim({-1});
Q
Qiao Longfei 已提交
41 42 43
  }

  if (var->IsType<LoDTensor>()) {
44 45 46 47 48 49 50 51
    return var->Get<LoDTensor>().dims();
  } else if (var->IsType<SelectedRows>()) {
    return var->Get<SelectedRows>().GetCompleteDims();
  } else {
    return DDim({-1});
  }
}

Q
Qiao Longfei 已提交
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
static LoD GetLoD(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  auto default_lod = LoD({{}});

  if (var == nullptr) {
    return default_lod;
  }

  if (var->IsType<LoDTensor>()) {
    return var->Get<LoDTensor>().lod();
  } else {
    return default_lod;
  }
}

67
std::string OperatorBase::Input(const std::string& name) const {
Y
Yu Yang 已提交
68
  auto& ins = Inputs(name);
Y
Yu Yang 已提交
69
  PADDLE_ENFORCE_LE(ins.size(), 1UL,
70 71
                    "Operator %s's input %s should contain only one variable.",
                    type_, name);
Y
Yu Yang 已提交
72
  return ins.empty() ? kEmptyVarName : ins[0];
Y
Yan Chunwei 已提交
73 74
}

Y
Yu Yang 已提交
75 76
const std::vector<std::string>& OperatorBase::Inputs(
    const std::string& name) const {
Y
Yu Yang 已提交
77
  auto it = inputs_.find(name);
78 79
  PADDLE_ENFORCE(it != inputs_.end(), "Operator %s does not have the input %s.",
                 type_, name);
Y
Yu Yang 已提交
80
  return it->second;
Y
Yan Chunwei 已提交
81 82
}

83
std::string OperatorBase::Output(const std::string& name) const {
Y
Yu Yang 已提交
84
  auto& outs = Outputs(name);
Y
Yu Yang 已提交
85
  PADDLE_ENFORCE_LE(outs.size(), 1UL,
86 87
                    "Operator %s's output %s should contain only one variable.",
                    type_, name);
Y
Yu Yang 已提交
88
  return outs.empty() ? kEmptyVarName : outs[0];
Y
Yan Chunwei 已提交
89 90
}

Y
Yu Yang 已提交
91 92
const std::vector<std::string>& OperatorBase::Outputs(
    const std::string& name) const {
Y
Yu Yang 已提交
93
  auto it = outputs_.find(name);
94 95
  PADDLE_ENFORCE(it != outputs_.end(),
                 "Operator %s does not have an output called %s.", type_, name);
Y
Yu Yang 已提交
96
  return it->second;
Y
Yan Chunwei 已提交
97 98
}

99
std::string OperatorBase::DebugStringEx(const Scope* scope) const {
Q
Qiao Longfei 已提交
100
  std::stringstream ss;
Y
Yu Yang 已提交
101
  ss << "Op(" << type_ << "), inputs:{";
Y
Yu Yang 已提交
102 103
  for (auto it = inputs_.begin(); it != inputs_.end();) {
    auto& input = *it;
Y
Yu Yang 已提交
104 105 106
    ss << input.first << "[";
    for (size_t i = 0; i < input.second.size(); ++i) {
      ss << input.second[i];
107
      if (scope) {
Q
Qiao Longfei 已提交
108 109
        ss << "[" << GetDims(*scope, input.second[i]) << "]";
        ss << "(" << GetLoD(*scope, input.second[i]) << ")";
110
      }
Y
Yu Yang 已提交
111 112 113
      if (i != input.second.size() - 1) {
        ss << ", ";
      }
114
    }
Y
Yu Yang 已提交
115
    ss << "]";
Y
Yu Yang 已提交
116 117
    ++it;
    if (it != inputs_.end()) {
118 119
      ss << ", ";
    }
Q
Qiao Longfei 已提交
120
  }
Y
Yu Yang 已提交
121
  ss << "}, outputs:{";
Y
Yu Yang 已提交
122 123
  for (auto it = outputs_.begin(); it != outputs_.end();) {
    auto& output = *it;
Y
Yu Yang 已提交
124 125 126
    ss << output.first << "[";
    for (size_t i = 0; i < output.second.size(); ++i) {
      ss << output.second[i];
127
      if (scope) {
Q
Qiao Longfei 已提交
128 129
        ss << "[" << GetDims(*scope, output.second[i]) << "]";
        ss << "(" << GetLoD(*scope, output.second[i]) << ")";
130
      }
Y
Yu Yang 已提交
131 132 133
      if (i != output.second.size() - 1) {
        ss << ", ";
      }
134
    }
Y
Yu Yang 已提交
135
    ss << "]";
Y
Yu Yang 已提交
136 137
    ++it;
    if (it != outputs_.end()) {
138 139
      ss << ", ";
    }
Q
Qiao Longfei 已提交
140
  }
Y
Yu Yang 已提交
141
  ss << "}.";
Q
Qiao Longfei 已提交
142 143 144
  return ss.str();
}

D
dongzhihong 已提交
145 146
void OperatorBase::Rename(const std::string& old_name,
                          const std::string& new_name) {
Y
Yu Yang 已提交
147 148 149 150 151 152 153
  for (auto& input : inputs_) {
    std::replace(input.second.begin(), input.second.end(), old_name, new_name);
  }
  for (auto& output : outputs_) {
    std::replace(output.second.begin(), output.second.end(), old_name,
                 new_name);
  }
D
dongzhihong 已提交
154 155
}

Y
Yu Yang 已提交
156
OperatorBase::OperatorBase(const std::string& type,
Y
Yu Yang 已提交
157 158
                           const VariableNameMap& inputs,
                           const VariableNameMap& outputs,
Y
Yu Yang 已提交
159 160
                           const AttributeMap& attrs)
    : type_(type), inputs_(inputs), outputs_(outputs), attrs_(attrs) {
161 162
  GenerateTemporaryNames();
  CheckAllInputOutputSet();
Y
Yu Yang 已提交
163
}
164

Q
qijun 已提交
165 166
std::vector<std::string> OperatorBase::InputVars() const {
  std::vector<std::string> ret_val;
Y
Yu Yang 已提交
167
  for (auto& o : inputs_) {
Q
qijun 已提交
168 169 170 171 172 173
    ret_val.reserve(ret_val.size() + o.second.size());
    ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
  }
  return ret_val;
}

Y
Yu Yang 已提交
174 175 176 177 178 179 180 181 182 183
std::vector<std::string> OperatorBase::OutputVars(bool has_intermediate) const {
  std::vector<std::string> ret_val;
  if (has_intermediate) {
    // push all outputs into ret_val
    for (auto& o : outputs_) {
      ret_val.reserve(ret_val.size() + o.second.size());
      ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
    }
    return ret_val;
  }
Y
Yu Yang 已提交
184
  auto& info = OpInfoMap::Instance().Get(Type());
Y
Yu Yang 已提交
185 186

  // get all OpProto::Var for outputs
Y
Yu Yang 已提交
187
  for (auto& o : info.Proto().outputs()) {
Y
Yu Yang 已提交
188 189 190 191 192 193 194 195 196
    // ignore all intermediate output
    if (o.intermediate()) continue;
    auto out = outputs_.find(o.name());
    if (out != outputs_.end()) {
      ret_val.reserve(ret_val.size() + out->second.size());
      ret_val.insert(ret_val.end(), out->second.begin(), out->second.end());
    }
  }
  return ret_val;
D
dongzhihong 已提交
197 198
}

199 200 201
void OperatorBase::CheckAllInputOutputSet() const {
  auto& info_map = OpInfoMap::Instance();
  auto* op_info = info_map.GetNullable(Type());
Y
Yu Yang 已提交
202
  if (op_info == nullptr || op_info->proto_ == nullptr) return;
203 204 205

  for (auto& in : op_info->Proto().inputs()) {
    PADDLE_ENFORCE(inputs_.find(in.name()) != inputs_.end(),
Y
Yu Yang 已提交
206
                   "Type %s's input %s is not set", Type(), in.name());
207 208 209 210
  }

  for (auto& out : op_info->Proto().outputs()) {
    PADDLE_ENFORCE(outputs_.find(out.name()) != outputs_.end(),
Y
Yu Yang 已提交
211
                   "Type %s's output %s is not set", Type(), out.name());
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
  }
}

void OperatorBase::GenerateTemporaryNames() {
  static std::atomic<size_t> gUniqId(0UL);
  for (auto& output : outputs_) {
    for (auto& output_name : output.second) {
      if (output_name == kTempVarName) {
        output_name += type_;
        output_name += "@";
        output_name += std::to_string(gUniqId.fetch_add(1));
      }
    }
  }
}

228 229 230 231
static bool VarIsTensor(const Variable* var) {
  return var->IsType<LoDTensor>() || var->IsType<SelectedRows>();
}

232
static const Tensor* GetTensorFromVar(Variable* var) {
Q
QI JUN 已提交
233
  if (var->IsType<LoDTensor>()) {
234
    return var->GetMutable<LoDTensor>();
Q
QI JUN 已提交
235
  } else if (var->IsType<SelectedRows>()) {
236
    return var->GetMutable<SelectedRows>()->mutable_value();
Q
QI JUN 已提交
237
  } else {
Y
Yang Yang 已提交
238 239
    PADDLE_THROW("Variable type_id %s, expect LoDTensor/SelectedRows.",
                 var->Type().name());
Q
QI JUN 已提交
240 241 242 243 244
  }
}

static Tensor* GetMutableTensorFromVar(Variable* var) {
  if (var->IsType<LoDTensor>()) {
245
    return var->GetMutable<LoDTensor>();
Q
QI JUN 已提交
246
  } else if (var->IsType<SelectedRows>()) {
247
    return var->GetMutable<SelectedRows>()->mutable_value();
Q
QI JUN 已提交
248
  } else {
Y
Yang Yang 已提交
249 250
    PADDLE_THROW("Variable type_id %s, expect LoDTensor/SelectedRows.",
                 var->Type().name());
Q
QI JUN 已提交
251 252 253
  }
}

254
template <>
255
const Tensor* ExecutionContext::Input<Tensor>(const std::string& name) const {
256
  auto* var = InputVar(name);
257 258
  return var == nullptr ? nullptr
                        : GetTensorFromVar(const_cast<Variable*>(var));
259 260 261
}

template <>
262
const std::vector<const Tensor*> ExecutionContext::MultiInput<Tensor>(
263 264 265 266
    const std::string& name) const {
  auto names = op().Inputs(name);
  std::vector<const Tensor*> res;
  res.reserve(names.size());
267 268 269 270 271
  std::transform(names.begin(), names.end(), std::back_inserter(res),
                 [&](const std::string& sub_name) {
                   auto var = scope_.FindVar(sub_name);
                   return var == nullptr ? nullptr : GetTensorFromVar(var);
                 });
272 273 274 275
  return res;
}

template <>
276
Tensor* ExecutionContext::Output<Tensor>(const std::string& name) const {
277
  auto var = OutputVar(name);
Q
QI JUN 已提交
278
  return var == nullptr ? nullptr : GetMutableTensorFromVar(var);
279 280 281
}

template <>
282
std::vector<Tensor*> ExecutionContext::MultiOutput<Tensor>(
283 284 285 286
    const std::string& name) const {
  auto names = op().Outputs(name);
  std::vector<Tensor*> res;
  res.reserve(names.size());
287 288
  std::transform(names.begin(), names.end(), std::back_inserter(res),
                 [&](const std::string& sub_name) {
289 290
                   auto var = scope_.FindVar(sub_name);
                   return var == nullptr ? nullptr
Q
QI JUN 已提交
291
                                         : GetMutableTensorFromVar(var);
292
                 });
293 294 295
  return res;
}

Y
Yu Yang 已提交
296 297 298 299 300
bool OpSupportGPU(const std::string& op_type) {
  auto& all_kernels = OperatorWithKernel::AllOpKernels();
  auto it = all_kernels.find(op_type);
  if (it == all_kernels.end()) {
    // All control operator must support GPU
301

Y
Yu Yang 已提交
302 303 304 305 306 307 308 309 310 311
    return true;
  }
  for (auto& kern_pair : it->second) {
    if (platform::is_gpu_place(kern_pair.first.place_)) {
      return true;
    }
  }
  return false;
}

312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
class RuntimeInferShapeContext : public InferShapeContext {
 public:
  RuntimeInferShapeContext(const OperatorBase& op, const Scope& scope)
      : op_(op), scope_(scope) {}

  bool HasInput(const std::string& name) const override {
    auto& ins = Inputs(name);
    size_t length = ins.size();
    if (length == 0) {
      return false;
    }
    PADDLE_ENFORCE_EQ(length, 1UL, "Input %s should have more than one inputs",
                      name);
    auto ipt = ins[0];
    auto* var = ipt == kEmptyVarName ? nullptr : scope_.FindVar(ipt);
    return var != nullptr;
  }

  bool HasOutput(const std::string& name) const override {
    auto& outs = Outputs(name);
    size_t length = outs.size();
    if (length == 0) {
      return false;
    }
    PADDLE_ENFORCE_EQ(length, 1UL, "Output %s should have more than one inputs",
                      name);
    auto ipt = outs[0];
    auto* var = ipt == kEmptyVarName ? nullptr : scope_.FindVar(ipt);
    return var != nullptr;
  }

  bool HasInputs(const std::string& name) const override {
    auto inputs = op_.Inputs(name);
    if (inputs.empty()) {
      return false;
    }
    for (auto& input : inputs) {
      if (scope_.FindVar(input) == nullptr) {
        return false;
      }
    }
    return true;
  }

  bool HasOutputs(const std::string& name) const override {
    auto outputs = op_.Outputs(name);
    if (outputs.empty()) {
      return false;
    }
    for (auto& output : outputs) {
      if (scope_.FindVar(output) == nullptr) {
        return false;
      }
    }
    return true;
  }

  AttrReader Attrs() const override { return AttrReader(op_.Attrs()); }

  const std::vector<std::string>& Inputs(
      const std::string& name) const override {
    return op_.Inputs(name);
  }

  const std::vector<std::string>& Outputs(
      const std::string& name) const override {
    return op_.Outputs(name);
  }

Q
Qiao Longfei 已提交
381 382 383 384 385 386 387 388 389 390 391 392
  void ShareLoD(const std::string& in, const std::string& out, size_t i = 0,
                size_t j = 0) const override {
    PADDLE_ENFORCE_LT(i, Inputs(in).size());
    PADDLE_ENFORCE_LT(j, Outputs(out).size());
    Variable* in_var = scope_.FindVar(Inputs(in)[i]);
    Variable* out_var = scope_.FindVar(Outputs(out)[j]);
    if (!in_var->IsType<LoDTensor>()) return;
    PADDLE_ENFORCE(out_var->IsType<LoDTensor>(),
                   "The %d-th output of Output(%s) must be LoDTensor.", j, out);
    auto in_tensor = in_var->Get<LoDTensor>();
    auto* out_tensor = out_var->GetMutable<LoDTensor>();
    out_tensor->set_lod(in_tensor.lod());
D
dzhwinter 已提交
393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411

    // TODO(dzhwinter) : reuse ShareLoD in most operators.
    // Need to call ShareLayout explicitly in sequence related ops.
    // Shall we have a better method to shared info between in/out Tensor?
    out_tensor->set_layout(in_tensor.layout());
  }

  void ShareLayout(const std::string& in, const std::string& out, size_t i = 0,
                   size_t j = 0) const {
    PADDLE_ENFORCE_LT(i, Inputs(in).size());
    PADDLE_ENFORCE_LT(j, Outputs(out).size());
    Variable* in_var = scope_.FindVar(Inputs(in)[i]);
    Variable* out_var = scope_.FindVar(Outputs(out)[j]);
    if (!in_var->IsType<LoDTensor>()) return;
    PADDLE_ENFORCE(out_var->IsType<LoDTensor>(),
                   "The %d-th output of Output(%s) must be LoDTensor.", j, out);
    auto in_tensor = in_var->Get<LoDTensor>();
    auto* out_tensor = out_var->GetMutable<LoDTensor>();
    out_tensor->set_layout(in_tensor.layout());
Q
Qiao Longfei 已提交
412 413
  }

414 415 416
  bool IsRuntime() const override { return true; }

 protected:
417 418 419 420 421 422 423
  DDim GetDim(const std::string& name) const override {
    Variable* var = scope_.FindVar(name);
    if (var->IsType<LoDTensor>()) {
      return var->Get<LoDTensor>().dims();
    } else if (var->IsType<SelectedRows>()) {
      return var->Get<SelectedRows>().GetCompleteDims();
    } else {
Y
Yang Yang 已提交
424 425
      PADDLE_THROW("Variable %s type_id %s, expect LoDTensor/SelectedRows.",
                   name, var->Type().name());
426 427 428 429 430 431 432 433 434 435
    }
  }

  void SetDim(const std::string& name, const DDim& dim) override {
    Variable* var = scope_.FindVar(name);
    if (var->IsType<LoDTensor>()) {
      var->GetMutable<LoDTensor>()->Resize(dim);
    } else if (var->IsType<SelectedRows>()) {
      var->GetMutable<SelectedRows>()->set_height(dim[0]);
    } else {
Y
Yang Yang 已提交
436 437
      PADDLE_THROW("Variable %s type_id %s, expect LoDTensor/SelectedRows.",
                   name, var->Type().name());
438 439 440
    }
  }

441
  proto::VarDesc::VarType GetVarType(const std::string& name) const override {
442 443 444 445 446
    auto* var = scope_.FindVar(name);
    return ToVarType(var->Type());
  }

 private:
447 448 449 450 451
  const OperatorBase& op_;
  const Scope& scope_;
};

void OperatorWithKernel::Run(const Scope& scope,
D
dzhwinter 已提交
452
                             const platform::Place& place) const {
453 454
  RuntimeInferShapeContext infer_shape_ctx(*this, scope);
  this->InferShape(&infer_shape_ctx);
Y
Yu Yang 已提交
455 456
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
  auto dev_ctx = pool.Get(place);
457 458 459 460 461

  // check if op[type] has kernel registered.
  auto& all_op_kernels = AllOpKernels();
  auto kernels_iter = all_op_kernels.find(type_);
  if (kernels_iter == all_op_kernels.end()) {
Y
Yu Yang 已提交
462 463
    PADDLE_THROW(
        "There are no kernels which are registered in the %s operator.", type_);
464 465
  }

D
dzhwinter 已提交
466
  ExecutionContext ctx(*this, scope, *dev_ctx);
467

Q
qiaolongfei 已提交
468 469
  OpKernelMap& kernels = kernels_iter->second;

470 471
  // TODO(dzhwinter) : kernel fallback mechanism will be added when all the
  // transform functions are ready.
Q
qiaolongfei 已提交
472

473 474 475 476 477
  // for (auto& candidate : kKernelPriority) {
  //   Do selection
  // }

  auto expected_kernel_key = this->GetExpectedKernelType(ctx);
Q
qiaolongfei 已提交
478 479
  VLOG(3) << "expected_kernel_key:" << expected_kernel_key;

480 481 482 483 484 485 486
  auto kernel_iter = kernels.find(expected_kernel_key);
  if (kernel_iter == kernels.end()) {
    PADDLE_THROW("op %s does not have kernel for %s", type_,
                 KernelTypeToString(expected_kernel_key));
  }

  // do data transform
487 488 489 490 491 492 493 494 495 496
  Scope& new_scope = scope.NewScope();

  for (auto& var_name_item : this->Inputs()) {
    for (auto& var_name : var_name_item.second) {
      auto* var = scope.FindVar(var_name);
      if (var && VarIsTensor(var)) {
        auto* tensor_in = GetTensorFromVar(var);
        if (tensor_in->IsInitialized()) {
          auto kernel_type_for_var = this->GetKernelTypeForVar(
              var_name_item.first, *tensor_in, expected_kernel_key);
497
          if (TransFromNeeded(kernel_type_for_var, expected_kernel_key)) {
498 499 500 501 502 503 504 505
            auto out_var_names = OutputVars(true);
            if (std::find(out_var_names.begin(), out_var_names.end(),
                          var_name) != out_var_names.end()) {
              PADDLE_THROW(
                  "var %s is both input and output, "
                  "does not support transform",
                  var_name);
            }
506 507
            VLOG(3) << "Transform Variable " << var_name << " from "
                    << kernel_type_for_var << " to " << expected_kernel_key;
508
            auto* trans_var = new_scope.Var(var_name);
509 510 511 512
            std::shared_ptr<Tensor> out(new Tensor);
            DataTransform(expected_kernel_key, kernel_type_for_var, *tensor_in,
                          out.get());
            CopyVariableWithTensor(*var, *(out.get()), *trans_var);
513
          }
Q
QI JUN 已提交
514 515
        }
      }
516 517
    }
  }
Q
QI JUN 已提交
518

D
dzhwinter 已提交
519 520 521 522 523
  auto* new_dev_ctx = pool.Get(expected_kernel_key.place_);
  kernel_iter->second->Compute(
      ExecutionContext(*this, new_scope, *new_dev_ctx));

  /*For profiling/benchmark only*/
D
dzhwinter 已提交
524
  if (FLAGS_benchmark) {
D
dzhwinter 已提交
525 526
    new_dev_ctx->Wait();
  }
Q
Qiao Longfei 已提交
527 528
}

529
proto::DataType OperatorWithKernel::IndicateDataType(
Y
Yu Yang 已提交
530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554
    const ExecutionContext& ctx) const {
  auto& scope = ctx.scope();
  int data_type = -1;
  for (auto& input : this->inputs_) {
    for (auto& ipt_name : input.second) {
      auto* var = scope.FindVar(ipt_name);
      if (var != nullptr) {
        const Tensor* t = nullptr;
        if (var->IsType<Tensor>()) {
          t = &var->Get<Tensor>();
        } else if (var->IsType<LoDTensor>()) {
          t = &var->Get<LoDTensor>();
        } else if (var->IsType<SelectedRows>()) {
          t = &(var->Get<SelectedRows>().value());
        }
        if (t != nullptr) {
          int tmp = static_cast<int>(ToDataType(t->type()));
          PADDLE_ENFORCE(tmp == data_type || data_type == -1,
                         "DataType of Paddle Op %s must be the same.", Type());
          data_type = tmp;
        }
      }
    }
  }
  PADDLE_ENFORCE(data_type != -1, "DataType should be indicated by input");
555
  return static_cast<proto::DataType>(data_type);
Y
Yu Yang 已提交
556
}
557

558 559 560 561 562 563 564 565 566 567 568
OpKernelType OperatorWithKernel::GetExpectedKernelType(
    const ExecutionContext& ctx) const {
  return OpKernelType(IndicateDataType(ctx), ctx.GetPlace());
}

OpKernelType OperatorWithKernel::GetKernelTypeForVar(
    const std::string& var_name, const Tensor& tensor,
    const OpKernelType& expected_kernel_type) const {
  return OpKernelType(expected_kernel_type.data_type_, tensor.place());
}

Q
Qiao Longfei 已提交
569
}  // namespace framework
L
liaogang 已提交
570
}  // namespace paddle