softmax_with_cross_entropy_op.h 3.5 KB
Newer Older
C
caoying03 已提交
1 2
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

3 4 5
   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at
C
caoying03 已提交
6

C
caoying03 已提交
7
http://www.apache.org/licenses/LICENSE-2.0
C
caoying03 已提交
8

C
caoying03 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
C
caoying03 已提交
14 15 16 17

#pragma once
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
18
#include "paddle/operators/math/cross_entropy.h"
C
caoying03 已提交
19
#include "paddle/operators/math/softmax.h"
C
caoying03 已提交
20 21 22 23 24 25 26 27 28

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;

29
template <typename T>
Y
Yu Yang 已提交
30
class SoftmaxWithCrossEntropyKernel : public framework::OpKernel<T> {
C
caoying03 已提交
31
 public:
C
caoying03 已提交
32
  void Compute(const framework::ExecutionContext& context) const override {
C
caoying03 已提交
33
    PADDLE_ENFORCE(platform::is_cpu_place(context.GetPlace()),
34
                   "This kernel only runs on CPU.");
C
caoying03 已提交
35
    const Tensor* logits = context.Input<Tensor>("Logits");
36
    const Tensor* labels = context.Input<Tensor>("Label");
C
caoying03 已提交
37
    Tensor* softmax = context.Output<Tensor>("Softmax");
38
    Tensor* loss = context.Output<Tensor>("Loss");
C
caoying03 已提交
39

40 41
    softmax->mutable_data<T>(context.GetPlace());
    loss->mutable_data<T>(context.GetPlace());
C
caoying03 已提交
42

Q
QI JUN 已提交
43 44 45 46 47 48
    auto& dev_ctx =
        context.template device_context<platform::CPUDeviceContext>();
    math::SoftmaxFunctor<platform::CPUDeviceContext, T>()(dev_ctx, logits,
                                                          softmax);
    math::CrossEntropyFunctor<platform::CPUDeviceContext, T>()(
        dev_ctx, loss, softmax, labels, context.Attr<bool>("soft_label"));
C
caoying03 已提交
49
  }
C
caoying03 已提交
50 51
};

52
template <typename T>
Y
Yu Yang 已提交
53
class SoftmaxWithCrossEntropyGradKernel : public framework::OpKernel<T> {
C
caoying03 已提交
54
 public:
55
  void Compute(const framework::ExecutionContext& context) const override {
56 57 58
    const Tensor* out_grad =
        context.Input<Tensor>(framework::GradVarName("Loss"));
    const Tensor* labels = context.Input<Tensor>("Label");
59 60
    Tensor* logit_grad =
        context.Output<Tensor>(framework::GradVarName("Logits"));
61
    logit_grad->ShareDataWith(*context.Input<Tensor>("Softmax"));
62 63

    const int class_num = logit_grad->dims()[1];
C
caoying03 已提交
64 65
    auto out_grad_mat = EigenMatrix<T>::From(*out_grad);
    auto logit_grad_mat = EigenMatrix<T>::From(*logit_grad);
Q
QI JUN 已提交
66 67
    auto& place = *context.template device_context<platform::CPUDeviceContext>()
                       .eigen_device();
68
    if (context.Attr<bool>("soft_label")) {
69
      auto lbl_mat = EigenMatrix<T>::From(*labels);
Q
QI JUN 已提交
70
      logit_grad_mat.device(place) =
C
caoying03 已提交
71 72
          out_grad_mat.broadcast(Eigen::DSizes<int, 2>(1, class_num)) *
          (logit_grad_mat - lbl_mat);
73
    } else {
Q
QI JUN 已提交
74
      logit_grad_mat.device(place) =
C
caoying03 已提交
75 76 77
          logit_grad_mat *
          out_grad_mat.broadcast(Eigen::DSizes<int, 2>(1, class_num));

78
      const int batch_size = logit_grad->dims()[0];
C
caoying03 已提交
79
      const int64_t* label_data = labels->data<int64_t>();
80
      T* logit_grad_data = logit_grad->data<T>();
C
caoying03 已提交
81
      const T* out_grad_data = out_grad->data<T>();
82
      for (int i = 0; i < batch_size; ++i) {
C
caoying03 已提交
83
        logit_grad_data[i * class_num + label_data[i]] -= out_grad_data[i];
84
      }
85 86
    }
  }
C
caoying03 已提交
87 88 89 90
};

}  // namespace operators
}  // namespace paddle