pad_op.cc 4.6 KB
Newer Older
W
wanghaoshuang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include "paddle/operators/pad_op.h"

namespace paddle {
namespace operators {

using framework::Tensor;

class PadOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

26
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
27 28 29 30 31 32
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) of PadOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of PadOp should not be null.");

    auto x_dim = ctx->GetInputDim("X");
    auto paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
W
wanghaoshuang 已提交
33
    PADDLE_ENFORCE_EQ(x_dim.size() * 2, int64_t(paddings.size()),
W
wanghaoshuang 已提交
34 35
                      "Size of paddings should be equal to 2 * dimension size "
                      "of input tensor.");
W
wanghaoshuang 已提交
36
    std::vector<int64_t> out_dims(x_dim.size());
W
wanghaoshuang 已提交
37 38
    for (int i = 0; i < x_dim.size(); ++i) {
      out_dims[i] = x_dim[i] + paddings[i * 2] + paddings[i * 2 + 1];
W
wanghaoshuang 已提交
39
    }
Q
Qiao Longfei 已提交
40
    ctx->SetOutputDim("Out", framework::make_ddim(out_dims));
D
Fix bug  
dangqingqing 已提交
41 42 43
    if (out_dims[0] == x_dim[0]) {
      // Only pass LoD when the first dimension is equal between
      // output and input.
Q
Qiao Longfei 已提交
44
      ctx->ShareLoD("X", /*->*/ "Out");
D
Fix bug  
dangqingqing 已提交
45
    }
W
wanghaoshuang 已提交
46 47 48
  }
};

W
wanghaoshuang 已提交
49
class PadOpMaker : public framework::OpProtoAndCheckerMaker {
W
wanghaoshuang 已提交
50
 public:
51
  PadOpMaker(OpProto* proto, OpAttrChecker* op_checker)
W
wanghaoshuang 已提交
52
      : OpProtoAndCheckerMaker(proto, op_checker) {
W
wanghaoshuang 已提交
53 54 55 56
    AddInput("X",
             "The input of pad op. "
             "The input should be a k-D tensor(k > 0 and k < 7)");
    AddOutput("Out",
K
kexinzhao 已提交
57
              "The output of pad op. "
58
              "A tensor with the same shape as X.");
K
kexinzhao 已提交
59 60 61 62 63 64 65 66 67 68 69 70
    AddAttr<std::vector<int>>(
        "paddings",
        "(vector<int>) "
        "A list<int> to describe the padding rules for each dimension. "
        "For 2-D image tensor, paddings=[0, 1, 2, 3] means "
        "padding 0 row to top, 1 row to bottom, 2 columns to left "
        "and 3 columns to right. Size of paddings should be equal to "
        "2 * dimension size of the input tensor.");
    AddAttr<float>("pad_value",
                   "(float, default 0.0) "
                   "The value to fill the padded areas.")
        .SetDefault(0.0f);
W
wanghaoshuang 已提交
71
    AddComment(R"DOC(
K
kexinzhao 已提交
72 73 74 75
Pad Operator.

Pad input into output, as specified by paddings and pad_value. 
The input should be a k-D tensor(k > 0 and k < 7). As an example:
W
wanghaoshuang 已提交
76 77 78 79

Given:

X = [[1, 2],
K
kexinzhao 已提交
80
     [3, 4]],
W
wanghaoshuang 已提交
81

K
kexinzhao 已提交
82
paddings = [0, 1, 1, 2],
W
wanghaoshuang 已提交
83 84 85

and

K
kexinzhao 已提交
86
pad_value = 0,
Q
Qiao Longfei 已提交
87

K
kexinzhao 已提交
88
we have:
W
wanghaoshuang 已提交
89 90 91 92

Out = [[0, 1, 2, 0, 0]
       [0, 3, 4, 0, 0]
       [0, 0, 0, 0, 0]]
K
kexinzhao 已提交
93

W
wanghaoshuang 已提交
94 95 96 97 98 99 100 101
)DOC");
  }
};

class PadOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

102
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
103 104 105 106 107 108 109
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                   "Input(Out@GRAD) should not be null");
    auto x_dims = ctx->GetInputDim("X");
    auto x_grad_name = framework::GradVarName("X");
    if (ctx->HasOutput(x_grad_name)) {
      ctx->SetOutputDim(x_grad_name, x_dims);
W
wanghaoshuang 已提交
110
    }
W
wanghaoshuang 已提交
111 112 113
  }
};

114 115 116
class PadOpGradMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;
Y
Yu Yang 已提交
117 118 119 120 121 122 123 124

 protected:
  std::unique_ptr<framework::OpDescBind> Apply() const override {
    auto* bind = new framework::OpDescBind();
    bind->SetInput("X", Input("X"));
    bind->SetInput(framework::GradVarName("Out"), OutputGrad("Out"));
    bind->SetOutput(framework::GradVarName("X"), InputGrad("X"));
    bind->SetAttrMap(Attrs());
Y
Yu Yang 已提交
125
    bind->SetType("pad_grad");
Y
Yu Yang 已提交
126 127
    return std::unique_ptr<framework::OpDescBind>(bind);
  }
128 129
};

W
wanghaoshuang 已提交
130 131 132 133
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
134 135 136

REGISTER_OPERATOR(pad, ops::PadOp, ops::PadOpMaker, ops::PadOpGradMaker);
REGISTER_OPERATOR(pad_grad, ops::PadOpGrad);
Q
QI JUN 已提交
137 138 139 140
REGISTER_OP_CPU_KERNEL(
    pad, ops::PadKernel<paddle::platform::CPUDeviceContext, float>);
REGISTER_OP_CPU_KERNEL(
    pad_grad, ops::PadGradKernel<paddle::platform::CPUDeviceContext, float>);