gather_op_xpu.cc 5.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifdef PADDLE_WITH_XPU
#include "paddle/fluid/operators/gather_op.h"
#include <memory>
#include <string>
#include <vector>
#include "paddle/fluid/framework/ddim.h"
#include "paddle/fluid/framework/op_version_registry.h"
namespace paddle {
namespace operators {

template <typename T>
class GatherOpXPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    PADDLE_ENFORCE_EQ(
        platform::is_xpu_place(ctx.GetPlace()), true,
        platform::errors::PreconditionNotMet("This kernel only runs on XPU."));

    auto *x = ctx.Input<Tensor>("X");
    auto *index = ctx.Input<Tensor>("Index");
    auto *output = ctx.Output<Tensor>("Out");
    if (ctx.HasInput("Axis")) {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Now, it doesn't support XPU with Axis."));
    }

    output->mutable_data<T>(ctx.GetPlace());
    if (x->numel() == 0) return;
    // check index type is INT32
    const auto &index_type = index->type();
    bool index_type_match = index_type == framework::proto::VarType::INT32;
    PADDLE_ENFORCE_EQ(
        index_type_match, true,
        platform::errors::InvalidArgument(
            "XPU only support INT32, it holds %s, but desires to be %s",
            paddle::framework::DataTypeToString(index_type),
            paddle::framework::DataTypeToString(
                framework::proto::VarType::INT32)));

    const auto index_dims = index->dims();
    if (index_dims.size() == 2) {
      PADDLE_ENFORCE_EQ(
          index_dims[1], 1,
          platform::errors::InvalidArgument(
              "The last dim of index should be 1 when it is 2D, but we get %d",
              index_dims[1]));
    } else {
      PADDLE_ENFORCE_EQ(
          index_dims.size(), 1,
          platform::errors::InvalidArgument(
              "The index should be 1D, when it is not 2D, but we get %d",
              index_dims.size()));
    }
    int slice_size = x->numel() / x->dims()[0];
    auto &dev_ctx = ctx.template device_context<platform::XPUDeviceContext>();
    int r =
        xpu::gather<T>(dev_ctx.x_context(), x->data<T>(), index->data<int>(),
                       index->dims()[0], slice_size, output->data<T>());
    PADDLE_ENFORCE_EQ(
        r, xpu::Error_t::SUCCESS,
        platform::errors::External("XPU kernel error! error code=%d", r));
  }
};

template <typename T>
class GatherGradOpXPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    PADDLE_ENFORCE_EQ(
        platform::is_xpu_place(ctx.GetPlace()), true,
        platform::errors::PreconditionNotMet("This kernel only runs on XPU."));

    auto *index = ctx.Input<Tensor>("Index");
    auto *dx = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto *dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto &dev_ctx = ctx.template device_context<platform::XPUDeviceContext>();

    if (ctx.HasInput("Axis")) {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Now, it doesn't support XPU with Axis."));
    }

    dx->mutable_data<T>(ctx.GetPlace());
    const int zero = 0;
    int r_dx = xpu::memset(dev_ctx.x_context(), dx->data<T>(), zero,
                           dx->numel() * sizeof(T));
    PADDLE_ENFORCE_EQ(
        r_dx, xpu::Error_t::SUCCESS,
        platform::errors::External("XPU kernel error! error code=%d", r_dx));

    if (dout->numel() == 0) {
      return;
    }
    bool overwrite = ctx.Attr<bool>("overwrite");
    // check index type is INT32
    const auto &index_type = index->type();
    bool index_type_match = index_type == framework::proto::VarType::INT32;
    PADDLE_ENFORCE_EQ(
        index_type_match, true,
        platform::errors::InvalidArgument(
            "XPU only support INT32, it holds %s, but desires to be %s",
            paddle::framework::DataTypeToString(index_type),
            paddle::framework::DataTypeToString(
                framework::proto::VarType::INT32)));

    const auto index_dims = index->dims();
    if (index_dims.size() == 2) {
      PADDLE_ENFORCE_EQ(
          index_dims[1], 1,
          platform::errors::InvalidArgument(
              "The last dim of index should be 1 when it is 2D, but we get %d",
              index_dims[1]));
    } else {
      PADDLE_ENFORCE_EQ(
          index_dims.size(), 1,
          platform::errors::InvalidArgument(
              "The index should be 1D, when it is not 2D, but we get %d",
              index_dims.size()));
    }

    int index_size = index_dims[0];
    int slice_size = dout->numel() / dout->dims()[0];

    int r = xpu::scatter<T>(dev_ctx.x_context(), dout->data<T>(),
                            index->data<int>(), index_size, slice_size,
                            dx->data<T>(), overwrite);
    PADDLE_ENFORCE_EQ(
        r, xpu::Error_t::SUCCESS,
        platform::errors::External("XPU kernel error! error code=%d", r));
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_XPU_KERNEL(gather, ops::GatherOpXPUKernel<float>);
REGISTER_OP_XPU_KERNEL(gather_grad, ops::GatherGradOpXPUKernel<float>);
#endif