tracer.cc 9.1 KB
Newer Older
J
Jiabin Yang 已提交
1
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/imperative/tracer.h"
15
#include <map>
H
hong 已提交
16
#include <set>
M
minqiyang 已提交
17
#include <unordered_set>
18
#include <utility>
19
#include "paddle/fluid/framework/op_registry.h"
20
#include "paddle/fluid/imperative/amp_auto_cast.h"
21
#include "paddle/fluid/imperative/op_base.h"
22
#include "paddle/fluid/platform/denormal.h"
C
chengduo 已提交
23
#include "paddle/fluid/platform/profiler.h"
24 25
#include "paddle/fluid/string/string_helper.h"

26
DECLARE_bool(use_mkldnn);
27 28
DECLARE_string(tracer_mkldnn_ops_on);
DECLARE_string(tracer_mkldnn_ops_off);
29

30
namespace paddle {
M
minqiyang 已提交
31 32
namespace imperative {

33 34 35 36 37 38 39 40 41
static std::shared_ptr<Tracer> g_current_tracer(nullptr);

const std::shared_ptr<Tracer>& GetCurrentTracer() { return g_current_tracer; }

void SetCurrentTracer(const std::shared_ptr<Tracer>& tracer) {
  g_current_tracer = tracer;
  VLOG(6) << "Set current tracer: " << g_current_tracer;
}

42
void PassStopGradient(const NameVarBaseMap& outs, bool generate_grad) {
43 44 45 46 47 48 49 50 51 52 53 54
  for (const auto& pair : outs) {
    for (const auto& var : pair.second) {
      // NOTE(zhiqiu): this happends when None output are passed from python
      // side. For example, fake_quantize_dequantize_moving_average_abs_max may
      // pass None OutAccum in eval mode.
      // It can be refined by generate several different pybind interface for
      // one operator with different function signature.
      if (var == nullptr) {
        VLOG(4) << pair.first << " is NULL";
        continue;
      }
      VLOG(6) << "Set output: " << var->Name() << "'s OverridedStopGradient as "
55
              << generate_grad;
56
      var->InnerSetOverridedStopGradient(generate_grad);
57 58 59 60
    }
  }
}

61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
void IncreaseVarbaseReferenceCountUntilCopyComplete(
    const std::shared_ptr<imperative::VarBase>& var,
    const platform::Place& place) {
  // Note(zhiqiu): Follow the logic of TensorCopy to determine the place that we
  // need to add callback, see tensor_utils.cc:245
  auto place_ = platform::is_gpu_place(place) ? place : var->Place();

  auto tracer = imperative::GetCurrentTracer();
  auto gc = tracer->MutableGarbageCollectorIfNotExists(place_);

  // Note(zhiqiu): This is an empty callback, the only way is to "reference"
  // var, so it will not be destructed until the kernels launched at current
  // stream of given place is finished.
  auto callback = [var, place_]() {
    VLOG(4) << "Run callback of var:" << var->Name() << " at place " << place_;
  };

  gc->DirectClearCallback(callback);
}

paddle::framework::GarbageCollector* Tracer::MutableGarbageCollectorIfNotExists(
    const platform::Place& place) {
  // if not exists, create a new GarbageCollector at given place
  if (gcs_.count(place) == 0) {
    std::unique_ptr<framework::GarbageCollector> gc;
    if (platform::is_gpu_place(place)) {
#ifdef PADDLE_WITH_CUDA
      gc.reset(new framework::DefaultStreamGarbageCollector(
          BOOST_GET_CONST(platform::CUDAPlace, place), 0));

      VLOG(10) << "Created GarbageCollector at " << place;
#else
      PADDLE_THROW(platform::errors::PermissionDenied(
          "Paddle can't use CUDA device since it's not compiled with CUDA,"
          "Please recompile or reinstall Paddle with GPU support."));
#endif
    } else if (platform::is_cuda_pinned_place(place)) {
#ifdef PADDLE_WITH_CUDA
      gc.reset(new framework::CUDAPinnedGarbageCollector(
          BOOST_GET_CONST(platform::CUDAPinnedPlace, place), 0));

      VLOG(10) << "Created GarbageCollector at " << place;
#else
      PADDLE_THROW(platform::errors::PermissionDenied(
          "Paddle can't use CUDAPinned device since it's not compiled with "
          "CUDA,"
          "Please recompile or reinstall Paddle with GPU support."));
#endif
    } else if (platform::is_xpu_place(place)) {
#if defined(PADDLE_WITH_XPU)
      gc.reset(new framework::XPUGarbageCollector(
          BOOST_GET_CONST(platform::XPUPlace, place), 0));
      VLOG(10) << "Created GarbageCollector at " << place;
#else
      PADDLE_THROW(platform::errors::PermissionDenied(
          "Paddle can't use XPU device since it's not compiled with XPU,"
          "Please recompile or reinstall Paddle with XPU support."));
#endif
    } else if (platform::is_cpu_place(place)) {
      gc.reset(new framework::CPUGarbageCollector(
          BOOST_GET_CONST(platform::CPUPlace, place), 0));
      VLOG(10) << "Created GarbageCollector at " << place;
    } else {
      PADDLE_THROW(platform::errors::PreconditionNotMet(
          "Unsupported place for garbage collection"));
    }
    gcs_.emplace(place, std::move(gc));
  }

  return gcs_.at(place).get();
}

J
Jiabin Yang 已提交
133 134
void Tracer::TraceOp(const std::string& type, const NameVarBaseMap& ins,
                     const NameVarBaseMap& outs, framework::AttributeMap attrs,
135 136
                     const platform::Place& place, bool trace_backward,
                     const std::map<std::string, std::string>& inplace_map) {
137
  platform::RecordEvent op_type_record_event(type);
138
  platform::ScopedFlushDenormal flush;
J
Jiabin Yang 已提交
139
  VLOG(1) << "Trace Op: " << type;
140
  if (FLAGS_use_mkldnn) {
141 142 143 144 145 146 147 148 149 150 151
    // if both lists are empty all ops are enabled (default for
    // FLAGS_use_mkldnn=1)
    // if ops_on list is not empty only ops from that list are enabled
    if (!FLAGS_tracer_mkldnn_ops_on.empty()) {
      auto is_on = FLAGS_tracer_mkldnn_ops_on.find(type) != std::string::npos;
      attrs["use_mkldnn"] = is_on;
    } else {
      // if ops_on list is empty all ops are enabled except types from off_list
      auto is_off = FLAGS_tracer_mkldnn_ops_off.find(type) != std::string::npos;
      attrs["use_mkldnn"] = !is_off;
    }
152
  }
153 154 155 156 157 158 159
  auto op = framework::OpRegistry::CreateOp(type, {}, {}, {}, false);
  const auto& op_info = op->Info();
  auto* attr_checker = op_info.Checker();
  if (attr_checker) {
    attr_checker->Check(&attrs, true);
  }

160 161 162 163 164 165
  NameVarBaseMap new_ins = ins;
  if (enable_autocast_) {
    VLOG(5) << "Auto mixed precision run operator: " << type;
    new_ins = AutoCastInputs(type, ins);
  }

166
  try {
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
    if (platform::is_gpu_place(place)) {
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
      platform::SetDeviceId(BOOST_GET_CONST(platform::CUDAPlace, place).device);
#else
      PADDLE_THROW(platform::errors::PreconditionNotMet(
          "PaddlePaddle should compile with GPU if use CUDAPlace."));
#endif
    } else if (platform::is_xpu_place(place)) {
#ifdef PADDLE_WITH_XPU
      platform::SetXPUDeviceId(
          BOOST_GET_CONST(platform::XPUPlace, place).device);
#else
      PADDLE_THROW(platform::errors::PreconditionNotMet(
          "PaddlePaddle should compile with XPU if use XPUPlace."));
#endif
    }

184
    OpBase::Run(*op, new_ins, outs, attrs, place);
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
  } catch (platform::EnforceNotMet& exception) {
    framework::AppendErrorOpHint(type, &exception);
    throw std::move(exception);
  } catch (std::exception& ex) {
    PADDLE_THROW(platform::errors::Fatal(
        "Operator %s raises an %s exception.\n"
        "The exception content is\n:%s.",
        type, platform::demangle(typeid(ex).name()), ex.what()));
  } catch (...) {
    // NOTE: this branch represents a very serious bug with
    // low probability of occurrence, and we can't get its
    // exception content here.
    PADDLE_THROW(platform::errors::Fatal(
        "Operator %s raises an unknown exception.", type));
  }
J
Jiabin Yang 已提交
200

201 202
  if (enable_program_desc_tracing_) {
    VLOG(5) << "Trace op " << type << " into ProgramDesc";
203
    program_desc_tracer_->InsertOp(type, new_ins, outs, attrs);
204 205
  }

206
  if (ComputeRequiredGrad(new_ins, outs, trace_backward)) {
207
    CreateGradOpNode(*op, new_ins, outs, attrs, place, inplace_map);
208 209
  } else {
    VLOG(3) << "No Grad to track for Op: " << type;
210
  }
M
minqiyang 已提交
211 212
}

213
void Tracer::TraceOp(const std::string& type, const NameVarBaseMap& ins,
214 215 216 217
                     const NameVarBaseMap& outs, framework::AttributeMap attrs,
                     const std::map<std::string, std::string>& inplace_map) {
  TraceOp(type, ins, outs, std::move(attrs), expected_place_, has_grad_,
          inplace_map);
218 219
}

W
WangXi 已提交
220 221 222 223
void Tracer::SetExpectedPlace(platform::Place place) {
  expected_place_ = place;
}

J
Jiabin Yang 已提交
224
bool Tracer::ComputeRequiredGrad(const NameVarBaseMap& ins,
225
                                 const NameVarBaseMap& outs,
J
Jiabin Yang 已提交
226
                                 bool trace_backward) {
227 228 229 230 231 232 233 234 235 236 237 238 239
  if (!trace_backward) return false;

  for (const auto& name_pair : ins) {
    for (const auto& var_base : name_pair.second) {
      if (!var_base->OverridedStopGradient()) {
        VLOG(6) << "Find out input: " << var_base->Name()
                << "'s GeneratedGrad is True";
        PassStopGradient(outs, var_base->OverridedStopGradient());
        return true;
      }
    }
  }
  return false;
M
minqiyang 已提交
240 241 242
}

}  // namespace imperative
243
}  // namespace paddle