param_attr.py 12.0 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
F
fengjiayi 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
F
fengjiayi 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
F
update  
fengjiayi 已提交
14

15 16
from __future__ import print_function

17
import six
18
import warnings
19
import sys
20

21 22
from .initializer import Initializer, Xavier, Constant
from .regularizer import WeightDecayRegularizer
23
from paddle.fluid.data_feeder import check_type
Y
Yu Yang 已提交
24

25 26 27 28
__all__ = [
    'ParamAttr',
    'WeightNormParamAttr',
]
Y
Yu Yang 已提交
29

Y
Yu Yang 已提交
30 31

class ParamAttr(object):
C
chengduoZH 已提交
32
    """
Z
Zeng Jinle 已提交
33 34 35
    Create a object to represent the attribute of parameter. The attributes are:
    name, initializer, learning rate, regularizer, trainable, gradient clip,
    and model average.
36 37 38
    
    Note:
        ``gradient_clip`` of ``ParamAttr`` HAS BEEN DEPRECATED since 2.0. 
39 40
        Please use ``need_clip`` in ``ParamAttr`` to speficiy the clip scope.
        There are three clipping strategies: :ref:`api_paddle_nn_GradientClipByGlobalNorm` , 
41
        :ref:`api_fluid_clip_GradientClipByNorm` , :ref:`api_fluid_clip_GradientClipByValue` .
Z
Zeng Jinle 已提交
42 43 44 45 46 47 48 49 50 51

    Parameters:
        name (str, optional): The parameter's name. Default None, meaning that the name
                would be created automatically.
        initializer (Initializer, optional): The method to initial this parameter. Default
                None, meaning that the weight parameter is initialized by Xavier initializer,
                and the bias parameter is initialized by 0.
        learning_rate (float): The parameter's learning rate. The learning rate when
                optimize is the global learning rates times the parameter's learning rate times
                the factor of learning rate scheduler. Default 1.0.
52 53 54 55 56
        regularizer (WeightDecayRegularizer, optional): Regularization strategy. There are two method: 
                :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If 
                regularizer is also set in ``optimizer`` (such as :ref:`api_fluid_optimizer_SGDOptimizer` ), 
                that regularizer setting in optimizer will be ignored. Default None, meaning there is 
                no regularization.
Z
Zeng Jinle 已提交
57 58
        trainable (bool): Whether this parameter is trainable. Default True.
        do_model_average (bool): Whether this parameter should do model average
59
                when model average is enabled. Only used in ExponentialMovingAverage. Default True.
60
        need_clip (bool): Whether the parameter gradient need to be cliped in optimizer. Default is True.
C
chengduoZH 已提交
61 62 63 64

    Examples:
        .. code-block:: python

65 66 67 68 69 70 71 72 73
            import paddle
            paddle.enable_static()

            weight_attr = paddle.ParamAttr(name="weight",
                                           learning_rate=0.5,
                                           regularizer=paddle.regularizer.L2Decay(1.0),
                                           trainable=True)
            print(weight_attr.name) # "weight"
            paddle.nn.Linear(3, 4, weight_attr=weight_attr)
C
chengduoZH 已提交
74 75
    """

Y
Yu Yang 已提交
76 77 78 79 80
    def __init__(self,
                 name=None,
                 initializer=None,
                 learning_rate=1.0,
                 regularizer=None,
Y
Yu Yang 已提交
81
                 trainable=True,
82 83
                 do_model_average=True,
                 need_clip=True):
84 85 86 87 88 89 90 91

        if sys.version_info.major == 2:
            check_type(name, "name", (str, type(None), unicode), "ParamAttr")
        else:
            check_type(name, "name", (str, type(None)), "ParamAttr")
        check_type(learning_rate, "learning_rate", (float, int), "ParamAttr")
        check_type(trainable, "trainable", (bool), "ParamAttr")
        check_type(do_model_average, "do_model_average", (bool), "ParamAttr")
92
        check_type(need_clip, "need_clip", (bool), "ParamAttr")
93 94 95 96
        check_type(initializer, "initializer", (Initializer, type(None)),
                   "ParamAttr")
        check_type(regularizer, "regularizer",
                   (WeightDecayRegularizer, type(None)), "ParamAttr")
97

Y
Yu Yang 已提交
98
        self.name = name
99
        if self.name == "":
H
hong 已提交
100 101
            raise ValueError("name of ParamAttr can not be empty str")

Y
Yu Yang 已提交
102 103 104 105
        self.initializer = initializer
        self.learning_rate = learning_rate
        self.regularizer = regularizer
        self.trainable = trainable
106
        self.do_model_average = do_model_average
107
        self.need_clip = need_clip
Y
Yu Yang 已提交
108

Y
yuyang18 已提交
109
    def _set_default_initializer(self, initializer):
C
chengduoZH 已提交
110 111 112
        """
        Set the default initializer, the initializer should be Constant,
        Uniform, Normal, Xavier, MSRA.
C
chengduoZH 已提交
113 114 115 116 117 118

        Args:
            initializer(Initializer): the initializer to set.

        Returns:
            None
C
chengduoZH 已提交
119
        """
Y
Yu Yang 已提交
120 121 122 123 124 125 126 127 128 129
        if initializer is None:
            if self.initializer is None:
                raise ValueError("ParamAttr.initializer is not set")
            return

        if self.initializer is not None:
            return

        self.initializer = initializer

Y
yuyang18 已提交
130
    def _set_default_param_initializer(self):
C
chengduoZH 已提交
131 132
        """
        Set the default initializer for the parameter with Xavier.
C
chengduoZH 已提交
133 134 135 136 137 138

        Args:
            None.

        Returns:
            None.
C
chengduoZH 已提交
139
        """
Y
yuyang18 已提交
140
        self._set_default_initializer(Xavier())
Y
Yu Yang 已提交
141

Y
yuyang18 已提交
142
    def _set_default_bias_initializer(self):
C
chengduoZH 已提交
143 144
        """
        Set the default initializer for the bias with Constant(0.0).
C
chengduoZH 已提交
145 146 147 148 149 150

        Args:
            None.

        Returns:
            None.
C
chengduoZH 已提交
151
        """
Y
yuyang18 已提交
152
        self._set_default_initializer(Constant(0.0))
Y
Yu Yang 已提交
153 154

    @staticmethod
Y
yuyang18 已提交
155
    def _to_attr(arg):
C
chengduoZH 已提交
156 157 158 159 160 161 162 163 164 165 166 167 168 169
        """
        Create ParamAttr[s].

        Args:
            arg: Arguments to initialize ParamAttr[s]. arg's type can be
                str, Initializer, float, WeightDecayRegularizer, BaseGradientClipAttr,
                bool, ParamAttr, or a list of above type.

        Returns:
            ParamAttr[s]: ParamAttr[s] initialized with arg.

        Raises:
            arg can not initialize a ParamAttr.
        """
Y
Yu Yang 已提交
170 171
        if arg is None:
            return ParamAttr()
172
        elif isinstance(arg, list) or isinstance(arg, tuple):
Y
yuyang18 已提交
173
            return [ParamAttr._to_attr(a) for a in arg]
Y
Yu Yang 已提交
174 175
        elif isinstance(arg, ParamAttr):
            return arg
176
        elif isinstance(arg, six.string_types):
Y
Yu Yang 已提交
177 178 179 180 181 182
            return ParamAttr(name=arg)
        elif isinstance(arg, Initializer):
            return ParamAttr(initializer=arg)
        elif isinstance(arg, WeightDecayRegularizer):
            return ParamAttr(regularizer=arg)
        elif isinstance(arg, bool):
Y
yuyang18 已提交
183
            return ParamAttr._to_attr(None) if arg else False
Y
Yu Yang 已提交
184 185 186
        else:
            raise TypeError("{0} cast to ParamAttr".format(type(arg)))

Y
yuyang18 已提交
187
    def _to_kwargs(self, with_initializer=False):
C
chengduoZH 已提交
188 189 190 191 192 193 194 195 196
        """
        Returns the attributes of this parameter.

        Args:
            with_initializer(bool): Whether to add initializer attr.

        Returns:
            Parameter attributes(map): The attributes of this parameter.
        """
Y
Yu Yang 已提交
197 198
        kwargs = {
            'name': self.name,
G
guosheng 已提交
199 200 201
            'optimize_attr': {
                'learning_rate': self.learning_rate
            },
Y
Yu Yang 已提交
202
            'regularizer': self.regularizer,
Y
Yu Yang 已提交
203
            'trainable': self.trainable,
204 205
            'do_model_average': self.do_model_average,
            'need_clip': self.need_clip
Y
Yu Yang 已提交
206 207 208 209
        }
        if with_initializer:
            kwargs['initializer'] = self.initializer
        return kwargs
G
guosheng 已提交
210 211 212


class WeightNormParamAttr(ParamAttr):
213
    r"""
214
	:api_attr: Static Graph
S
swtkiwi 已提交
215

216 217 218
    Note:
        Please use 'paddle.nn.utils.weight_norm' in dygraph mode.

219
    Parameter of weight Norm. Weight Norm is a reparameterization of the weight vectors
220
    in a neural network that decouples the magnitude of those weight vectors from
C
chengduoZH 已提交
221 222 223 224
    their direction. Weight Norm has been implemented as discussed in this
    paper: `Weight Normalization: A Simple Reparameterization to Accelerate
    Training of Deep Neural Networks
    <https://arxiv.org/pdf/1602.07868.pdf>`_.
225 226
      
    Note:
227 228
        ``gradient_clip`` of ``ParamAttr`` HAS BEEN DEPRECATED since 2.0. 
        Please use ``need_clip`` in ``ParamAttr`` to speficiy the clip scope.
229 230
        There are three clipping strategies: :ref:`api_paddle_nn_ClipGradByGlobalNorm` , 
        :ref:`api_paddle_nn_ClipGradByNorm` , :ref:`api_paddle_nn_ClipGradByValue` .
231
        
C
chengduoZH 已提交
232 233

    Args:
234
        dim(int, optional): Dimension over which to compute the norm. Dim is a non-negative
235
            number which is less than the rank of weight Tensor. For Example, dim can
T
tianshuo78520a 已提交
236
            be chosen from 0, 1, 2, 3 for convolution whose weight shape is [cout, cin, kh, kw]
237 238 239
            and rank is 4. Default None, meaning that all elements will be normalized.
        name(str, optional): The parameter's name. Default None, meaning that the name would
            be created automatically. Please refer to :ref:`api_guide_Name` for more details.
240 241
        initializer(Initializer, optional): The method to initialize this parameter, such as
            ``initializer = paddle.nn.initializer.Constant(1.0)``. Default None,
242 243
            meaning that the weight parameter is initialized by Xavier initializer, and
            the bias parameter is initialized by 0.
244
        learning_rate(float32, optional): The parameter's learning rate when
245
            optimizer is :math:`global\_lr * parameter\_lr * scheduler\_factor`.
X
Xin Pan 已提交
246
            Default 1.0.
247
        regularizer (WeightDecayRegularizer, optional): Regularization strategy. There are
248 249
            two method: :ref:`api_paddle_regularizer_L1Decay` ,
            :ref:`api_paddle_regularizer_L2Decay`.
250 251 252
            If regularizer isralso set in ``optimizer``
            (such as :ref:`api_paddle_optimizer_SGD` ), that regularizer setting in
            optimizer will be ignored. Default None, meaning there is no regularization.
253 254
        trainable(bool, optional): Whether this parameter is trainable. Default True.
        do_model_average(bool, optional): Whether this parameter should do model average.
X
Xin Pan 已提交
255
            Default False.
256
        need_clip (bool, optional): Whether the parameter gradient need to be cliped in optimizer. Default is True.
C
chengduoZH 已提交
257 258 259

    Examples:
        .. code-block:: python
260
            
261 262 263 264 265 266
            import paddle

            paddle.enable_static()

            data = paddle.static.data(name="data", shape=[3, 32, 32], dtype="float32")

267
            fc = paddle.static.nn.fc(x=data,
268
                                     size=1000,
269 270 271 272 273 274 275 276 277
                                     weight_attr=paddle.static.WeightNormParamAttr(
                                         dim=None,
                                         name='weight_norm_param',
                                         initializer=paddle.nn.initializer.Constant(1.0),
                                         learning_rate=1.0,
                                         regularizer=paddle.regularizer.L2Decay(0.1),
                                         trainable=True,
                                         do_model_average=False,
                                         need_clip=True))
C
chengduoZH 已提交
278

G
guosheng 已提交
279 280 281
    """
    # List to record the parameters reparameterized by weight normalization.
    # If these parameters are treated as Variable rather than Parameter,
282
    # it can be used to discriminate these parameters and help to serialize
G
guosheng 已提交
283 284 285
    # these paramters for inference.
    params_with_weight_norm = []

X
Xin Pan 已提交
286 287 288 289 290 291 292
    def __init__(self,
                 dim=None,
                 name=None,
                 initializer=None,
                 learning_rate=1.0,
                 regularizer=None,
                 trainable=True,
293 294
                 do_model_average=False,
                 need_clip=True):
X
Xin Pan 已提交
295 296 297 298 299 300
        super(WeightNormParamAttr, self).__init__(
            name=name,
            initializer=initializer,
            learning_rate=learning_rate,
            regularizer=regularizer,
            trainable=trainable,
301 302
            do_model_average=do_model_average,
            need_clip=need_clip)
G
guosheng 已提交
303
        self.dim = dim