activation_op.h 66.4 KB
Newer Older
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
2

L
Luo Tao 已提交
3 4 5 6 7 8 9 10 11
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Q
qijun 已提交
12 13

#pragma once
D
dzhwinter 已提交
14
#include <glog/logging.h>
Y
Yihua Xu 已提交
15
#include <algorithm>
16
#include <memory>
D
dzhwinter 已提交
17 18
#include <string>
#include <unordered_set>
19 20
#include <utility>
#include <vector>
21

C
Clementine 已提交
22 23 24 25 26
#include <cmath>
#ifndef _USE_MATH_DEFINES
#define _USE_MATH_DEFINES
#endif

27
#include <type_traits>
Y
Yi Wang 已提交
28 29
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
30
#include "paddle/fluid/framework/tensor_util.h"
31
#include "paddle/fluid/platform/enforce.h"
32
#include "paddle/fluid/platform/float16.h"
33
#include "paddle/phi/kernels/funcs/blas/blas.h"
34 35 36 37
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif

38 39
#include "paddle/phi/kernels/funcs/activation_functor.h"

Q
qijun 已提交
40 41 42
namespace paddle {
namespace operators {

43 44
using framework::To32BitIndex;

45
using ActBwdOpFwdDeps = phi::funcs::ActBwdOpFwdDeps;
46

C
chengduo 已提交
47 48 49 50 51 52
/* The following operator can be used to process SelectedRows, because the
 * output of those operator for zero is zero too.
 */
static std::unordered_set<std::string> CanBeUsedBySelectedRows = {
    "abs", "abs_grad", "square", "square_grad", "sqrt", "sqrt_grad"};

53 54 55 56 57
inline void ExtractActivationTensor(const framework::ExecutionContext& context,
                                    const framework::Tensor** X,
                                    framework::Tensor** Out) {
  auto x_var = context.InputVar("X");
  auto out_var = context.OutputVar("Out");
58 59 60 61 62 63 64 65
  PADDLE_ENFORCE_NOT_NULL(x_var,
                          platform::errors::NotFound(
                              "Cannot get input Variable X, variable name = %s",
                              context.InputName("X")));
  PADDLE_ENFORCE_NOT_NULL(
      out_var, platform::errors::NotFound(
                   "Cannot get output Variable Out, variable name = %s",
                   context.OutputName("Out")));
H
hong 已提交
66
  if (CanBeUsedBySelectedRows.count(context.Type())) {
67 68 69 70 71 72 73 74
    *X = paddle::framework::GetLoDTensorOrSelectedRowsValueFromVar(*x_var);
    *Out = paddle::framework::GetMutableLoDTensorOrSelectedRowsValueFromVar(
        out_var);
  } else {
    *X = context.Input<framework::Tensor>("X");
    *Out = context.Output<framework::Tensor>("Out");
  }

75 76 77 78
  PADDLE_ENFORCE_NOT_NULL(*Out, platform::errors::NotFound(
                                    "Cannot get the tensor from the Variable "
                                    "Output(Out), variable name = %s",
                                    context.OutputName("Out")));
79 80
}

81
template <ActBwdOpFwdDeps kDepValue>
82 83 84 85 86 87
inline void ExtractActivationGradTensor(
    const framework::ExecutionContext& context, const framework::Tensor** X,
    const framework::Tensor** Out, const framework::Tensor** dOut,
    framework::Tensor** dX) {
  auto out_grad_var = context.InputVar(framework::GradVarName("Out"));
  auto x_grad_var = context.OutputVar(framework::GradVarName("X"));
88 89
  const framework::Variable* out_var = nullptr;

90 91
  if (static_cast<int>(kDepValue) &
      static_cast<int>(ActBwdOpFwdDeps::kDepOut)) {
92
    out_var = context.InputVar("Out");
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
    PADDLE_ENFORCE_NOT_NULL(
        out_var, platform::errors::NotFound(
                     "Cannot get input Variable Out, variable name = %s",
                     context.InputName("Out")));
  }

  PADDLE_ENFORCE_NOT_NULL(
      out_grad_var, platform::errors::NotFound(
                        "Cannot get input Variable %s, variable name = %s",
                        framework::GradVarName("Out"),
                        context.InputName(framework::GradVarName("Out"))));
  PADDLE_ENFORCE_NOT_NULL(
      x_grad_var, platform::errors::NotFound(
                      "Cannot get output Variable %s, variable name = %s",
                      framework::GradVarName("X"),
                      context.OutputName(framework::GradVarName("X"))));
109

H
hong 已提交
110
  if (CanBeUsedBySelectedRows.count(context.Type())) {
111 112 113 114
    *dOut = paddle::framework::GetLoDTensorOrSelectedRowsValueFromVar(
        *out_grad_var);
    *dX = paddle::framework::GetMutableLoDTensorOrSelectedRowsValueFromVar(
        x_grad_var);
115 116 117 118 119 120 121 122

    if (out_var) {
      *Out =
          paddle::framework::GetLoDTensorOrSelectedRowsValueFromVar(*out_var);
    } else {
      *Out = *dOut;  // fake out
    }

123 124 125 126
  } else {
    *Out = context.Input<framework::Tensor>("Out");
    *dOut = context.Input<framework::Tensor>(framework::GradVarName("Out"));
    *dX = context.Output<framework::Tensor>(framework::GradVarName("X"));
127 128 129 130 131 132

    if (out_var) {
      *Out = &(out_var->Get<framework::LoDTensor>());
    } else {
      *Out = *dOut;  // fake out
    }
133
  }
134

135 136 137 138 139
  PADDLE_ENFORCE_NOT_NULL(*dX,
                          platform::errors::NotFound(
                              "Cannot get the tensor from the Variable "
                              "Output(Out), variable name = %s",
                              context.OutputName(framework::GradVarName("X"))));
140

141
  if (static_cast<int>(kDepValue) & static_cast<int>(ActBwdOpFwdDeps::kDepX)) {
C
chengduo 已提交
142
    auto x_var = context.InputVar("X");
143 144 145 146
    PADDLE_ENFORCE_NOT_NULL(x_var, platform::errors::NotFound(
                                       "Cannot get the tensor from the "
                                       "Variable Input(X), variable name = %s",
                                       context.InputName("X")));
H
hong 已提交
147
    if (CanBeUsedBySelectedRows.count(context.Type())) {
148
      *X = paddle::framework::GetLoDTensorOrSelectedRowsValueFromVar(*x_var);
C
chengduo 已提交
149
    } else {
150
      *X = context.Input<framework::Tensor>("X");
C
chengduo 已提交
151
    }
152
  } else {
H
hong 已提交
153
    VLOG(10) << " Inplace activation of Op : " << context.Type();
154 155 156
    *X = *dX;
  }
}
C
chengduo 已提交
157

158 159 160 161 162
template <typename DeviceContext, typename Functor>
class ActivationKernel
    : public framework::OpKernel<typename Functor::ELEMENT_TYPE> {
 public:
  using T = typename Functor::ELEMENT_TYPE;
C
chengduo 已提交
163

164 165 166 167
  void Compute(const framework::ExecutionContext& context) const override {
    const framework::Tensor* X = nullptr;
    framework::Tensor* Out = nullptr;
    ExtractActivationTensor(context, &X, &Out);
C
chengduo 已提交
168
    Out->mutable_data<T>(context.GetPlace());
169

170 171 172 173
    auto x = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(X, "Input", "X", "Activation"));
    auto out = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(Out, "Output", "Out", "Activation"));
Q
QI JUN 已提交
174 175
    auto* place =
        context.template device_context<DeviceContext>().eigen_device();
Q
qijun 已提交
176
    Functor functor;
177 178 179 180 181

    auto attrs = functor.GetAttrs();
    for (auto& attr : attrs) {
      *attr.second = context.Attr<float>(attr.first);
    }
182 183 184 185 186 187 188 189
    // use 32bit index to speed up computation
    bool use_32bit_index = out.size() < Eigen::NumTraits<int>::highest();
    bool is_gpu_place = platform::is_gpu_place(context.GetPlace());
    if (use_32bit_index && is_gpu_place) {
      functor(*place, To32BitIndex(x), To32BitIndex(out));
    } else {
      functor(*place, x, out);
    }
Q
qijun 已提交
190 191 192
  }
};

Q
QI JUN 已提交
193
template <typename DeviceContext, typename Functor>
194 195
class ActivationGradKernel
    : public framework::OpKernel<typename Functor::ELEMENT_TYPE> {
Q
qijun 已提交
196
 public:
197
  using T = typename Functor::ELEMENT_TYPE;
Q
qijun 已提交
198
  void Compute(const framework::ExecutionContext& context) const override {
199 200 201
    const framework::Tensor *X, *Out, *dOut;
    framework::Tensor* dX = nullptr;
    X = Out = dOut = nullptr;
202 203
    ExtractActivationGradTensor<Functor::FwdDeps()>(context, &X, &Out, &dOut,
                                                    &dX);
Q
qijun 已提交
204
    dX->mutable_data<T>(context.GetPlace());
205 206 207 208 209 210 211 212
    auto dout = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(dOut, "Input", "Out@GRAD", "ActivationGrad"));
    auto out = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(Out, "Input", "Out", "ActivationGrad"));
    auto dx = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(dX, "Input", "X@GRAD", "ActivationGrad"));
    auto x = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(X, "Input", "X", "ActivationGrad"));
Q
QI JUN 已提交
213 214
    auto* place =
        context.template device_context<DeviceContext>().eigen_device();
Q
qijun 已提交
215
    Functor functor;
216 217 218 219
    auto attrs = functor.GetAttrs();
    for (auto& attr : attrs) {
      *attr.second = context.Attr<float>(attr.first);
    }
220 221 222 223 224 225 226 227 228
    // use 32bit index to speed up computation
    bool use_32bit_index = out.size() < Eigen::NumTraits<int>::highest();
    bool is_gpu_place = platform::is_gpu_place(context.GetPlace());
    if (use_32bit_index && is_gpu_place) {
      functor(*place, To32BitIndex(x), To32BitIndex(out), To32BitIndex(dout),
              To32BitIndex(dx));
    } else {
      functor(*place, x, out, dout, dx);
    }
Q
qijun 已提交
229 230 231
  }
};

232 233 234 235 236 237 238 239 240
template <typename T>
struct BaseActivationFunctor {
  using ELEMENT_TYPE = T;

  using AttrPair = std::vector<std::pair<const char*, float*>>;

  AttrPair GetAttrs() { return AttrPair(); }
};

241
// sigmoid(x) = 1 / (1 + exp(-x))
Q
qijun 已提交
242
template <typename T>
243
struct SigmoidFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
244 245 246
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = static_cast<T>(1) / (static_cast<T>(1) + (-x).exp());
Q
qijun 已提交
247 248 249
  }
};

250 251 252 253 254 255
#define USE_PHI_FUNCTOR(name)                         \
  template <typename T>                               \
  using name##Functor = phi::funcs::name##Functor<T>; \
  template <typename T>                               \
  using name##GradFunctor = phi::funcs::name##GradFunctor<T>;

256 257 258 259 260 261 262 263
#define USE_PHI_DOUBLE_GRAD_FUNCTOR(name) \
  template <typename T>                   \
  using name##GradGradFunctor = phi::funcs::name##GradGradFunctor<T>;

#define USE_PHI_TRIPLE_GRAD_FUNCTOR(name) \
  template <typename T>                   \
  using name##TripleGradFunctor = phi::funcs::name##TripleGradFunctor<T>;

264 265 266 267 268 269 270 271 272 273 274
USE_PHI_FUNCTOR(Cos)
USE_PHI_FUNCTOR(Tan)
USE_PHI_FUNCTOR(Acos)
USE_PHI_FUNCTOR(Sin)
USE_PHI_FUNCTOR(Asin)
USE_PHI_FUNCTOR(Atan)
USE_PHI_FUNCTOR(Sinh)
USE_PHI_FUNCTOR(Cosh)
USE_PHI_FUNCTOR(Asinh)
USE_PHI_FUNCTOR(Acosh)
USE_PHI_FUNCTOR(Atanh)
275
USE_PHI_FUNCTOR(Tanh)
P
phlrain 已提交
276
USE_PHI_FUNCTOR(Exp)
277 278 279 280 281 282
USE_PHI_DOUBLE_GRAD_FUNCTOR(Tanh)
USE_PHI_TRIPLE_GRAD_FUNCTOR(Tanh)
USE_PHI_FUNCTOR(BRelu)
USE_PHI_FUNCTOR(ThresholdedRelu)
USE_PHI_FUNCTOR(LeakyRelu)
USE_PHI_DOUBLE_GRAD_FUNCTOR(LeakyRelu)
Y
YuanRisheng 已提交
283 284 285 286 287 288 289 290 291
USE_PHI_FUNCTOR(HardShrink)
USE_PHI_FUNCTOR(SoftShrink)
USE_PHI_FUNCTOR(TanhShrink)
USE_PHI_FUNCTOR(Silu)
USE_PHI_FUNCTOR(ELU)
USE_PHI_DOUBLE_GRAD_FUNCTOR(ELU)

template <typename T>
using ELUGradNegativeAlphaFunctor = phi::funcs::ELUGradNegativeAlphaFunctor<T>;
292

293
template <typename T>
294
struct SigmoidGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
295 296 297 298
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * out * (static_cast<T>(1) - out);
Q
qijun 已提交
299
  }
300

301 302 303
  static constexpr ActBwdOpFwdDeps FwdDeps() {
    return ActBwdOpFwdDeps::kDepOut;
  }
Q
qijun 已提交
304 305
};

306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
/*
    Out
    DOut -> SigmoidGradGrad -> DOutNew
    DDX                        DDOut

    DDOut = (1-Out)*Out*DDX
    DOutNew = (1-2*Out)*DOut*DDX
*/
template <typename T>
struct SigmoidGradGradFunctor : public BaseActivationFunctor<T> {
  template <typename Device>
  void operator()(const Device& dev, const framework::Tensor* Out,
                  const framework::Tensor* ddX, const framework::Tensor* dOut,
                  framework::Tensor* dOutNew, framework::Tensor* ddOut) const {
    auto* d = dev.eigen_device();
    auto ddx = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(ddX, "Input", "DDX", "SigmoidGradGrad"));
    auto out = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(Out, "Input", "Out", "SigmoidGradGrad"));

    if (dOutNew) {
      auto dout = framework::EigenVector<T>::Flatten(
          GET_DATA_SAFELY(dOut, "Input", "DOut", "SigmoidGradGrad"));
      auto dout_new = framework::EigenVector<T>::Flatten(
330
          GET_DATA_SAFELY(dOutNew, "Output", "DOutNew", "SigmoidGradGrad"));
331 332 333 334 335
      dout_new.device(*d) =
          (static_cast<T>(1) - static_cast<T>(2) * out) * dout * ddx;
    }
    if (ddOut) {
      auto ddout = framework::EigenVector<T>::Flatten(
336
          GET_DATA_SAFELY(ddOut, "Output", "DDOut", "SigmoidGradGrad"));
337 338 339
      ddout.device(*d) = (static_cast<T>(1) - out) * out * ddx;
    }
  }
340 341 342
  static constexpr ActBwdOpFwdDeps FwdDeps() {
    return ActBwdOpFwdDeps::kDepOut;
  }
343 344
};

345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
/*
    Out
    DOut                            D_Dout
    DDx     -> SigmoidTripleGrad -> D_DDx
    D_DDout                         d_OutNew
    D_Dout_new

    D_Dout = (1-2*Out)*DDx*D_Dout_new
    D_DDx = (1-Out)*Out*D_DDout + (1-2*Out)*DOut*D_Dout_new
    D_OutNew = (DDx-2*Out*DDx)*D_DDout - 2*DOut*DDx*D_Dout_new

    Out, DDX, DOut, D_DDOut, D_DOut_New   // input
    D_OutNew, D_DOut, D_DDx               // output
*/
template <typename T>
struct SigmoidTripleGradFunctor : public BaseActivationFunctor<T> {
  template <typename Device>
  void operator()(const Device& dev, const framework::Tensor* Out,
                  const framework::Tensor* ddX, const framework::Tensor* dOut,
                  const framework::Tensor* d_DDOut,
                  const framework::Tensor* d_dOut_New,
                  framework::Tensor* d_d_Out, framework::Tensor* d_Out_New,
                  framework::Tensor* d_DDx) const {
    auto* d = dev.eigen_device();
    auto ddx = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(ddX, "Input", "DDX", "SigmoidTripleGrad"));
    auto out = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(Out, "Input", "Out", "SigmoidTripleGrad"));
    auto dout = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(dOut, "Input", "DOut", "SigmoidTripleGrad"));
    auto d_ddOut = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(d_DDOut, "Input", "D_DDOut", "SigmoidTripleGrad"));
    auto d_dOutNew = framework::EigenVector<T>::Flatten(GET_DATA_SAFELY(
        d_dOut_New, "Input", "D_DOut_New", "SigmoidTripleGrad"));

    if (d_Out_New) {
      auto d_OutNew = framework::EigenVector<T>::Flatten(GET_DATA_SAFELY(
          d_Out_New, "Output", "D_OutNew", "SigmoidTripleGrad"));
      d_OutNew.device(*d) = (ddx - static_cast<T>(2) * out * ddx) * d_ddOut -
                            static_cast<T>(2) * dout * ddx * d_dOutNew;
    }
    if (d_d_Out) {
      auto d_dOut = framework::EigenVector<T>::Flatten(
          GET_DATA_SAFELY(d_d_Out, "Output", "D_DOut", "SigmoidTripleGrad"));
      d_dOut.device(*d) =
          (static_cast<T>(1) - static_cast<T>(2) * out) * ddx * d_dOutNew;
    }
    if (d_DDx) {
      auto d_ddx = framework::EigenVector<T>::Flatten(
          GET_DATA_SAFELY(d_DDx, "Output", "D_DDx", "SigmoidTripleGrad"));
      d_ddx.device(*d) =
          (static_cast<T>(1) - out) * out * d_ddOut +
          (static_cast<T>(1) - static_cast<T>(2) * out) * dout * d_dOutNew;
    }
  }
400 401 402
  static constexpr ActBwdOpFwdDeps FwdDeps() {
    return ActBwdOpFwdDeps::kDepOut;
  }
403 404
};

405 406 407 408
// Originally: logsigmoid(x) = -log (1 + exp(-x))
// For numerical stability, we can use the log-sum-exp trick:
// https://hips.seas.harvard.edu/blog/2013/01/09/computing-log-sum-exp/
// We can rewrite the above equation as:
F
fengjiayi 已提交
409
// out = -log( exp(0) + exp(-x)) [since exp(0) = 1]
410 411 412 413 414 415 416 417 418 419
//   = -log( exp(max(-x, 0) - max(-x, 0)) + exp(-x + max(-x, 0) - max(-x, 0)))
//   = -log( exp(max(-x, 0)) * exp(-max(-x, 0)) - exp(max(-x, 0)) * exp(-x -
//           max(-x, 0)))
//   = -log( exp(max(-x, 0)) * (exp(-max(-x, 0)) + exp(-x - max(-x, 0))))
//   = -log( exp(max(-x, 0)) - log(exp(-max(-x, 0)) + exp(-x - max(-x, 0)))
//
// Hence, logsigmoid(x) = - (max(-x, 0) + log(exp(-max(-x, 0))
// + exp(-x - max(-x, 0))))
template <typename T>
struct LogSigmoidFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
420 421
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
422
    auto temp = (-x).cwiseMax(static_cast<T>(0));  // temp = max(-x, 0)
F
fengjiayi 已提交
423
    out.device(d) = -temp - (((-temp).exp() + (-x - temp).exp()).log());
424 425 426 427 428 429 430 431
  }
};

// Originally: f' = exp(-x) / (1 + exp(-x))
// For numerical stability: f' = exp(-x - max(-x, 0)) / (exp(-max(-x, 0)) +
// exp(-x - max(-x, 0)))
template <typename T>
struct LogSigmoidGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
432 433 434
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
435 436
    auto temp = (-x).cwiseMax(static_cast<T>(0));  // temp = max(-x, 0)
    dx.device(d) =
F
fengjiayi 已提交
437
        dout * ((-x - temp).exp() / ((-temp).exp() + (-x - temp).exp()));
438
  }
439

440
  static constexpr ActBwdOpFwdDeps FwdDeps() { return ActBwdOpFwdDeps::kDepX; }
441 442
};

R
ronnywang 已提交
443 444 445 446 447 448 449 450
template <typename T>
struct Expm1GradFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * out + dout;
  }

451 452 453
  static constexpr ActBwdOpFwdDeps FwdDeps() {
    return ActBwdOpFwdDeps::kDepOut;
  }
R
ronnywang 已提交
454 455
};

Q
qijun 已提交
456
// relu(x) = max(x, 0)
457 458

template <typename T>
459 460 461
using ReluCPUFunctor = phi::funcs::ReluCPUFunctor<T>;
template <typename T>
using ReluGradFunctor = phi::funcs::ReluGradFunctor<T>;
Q
qijun 已提交
462

Q
qijun 已提交
463
template <typename T>
464
using ReluGradGradFunctor = phi::funcs::ReluGradGradFunctor<T>;
465

466 467
template <typename T>
using ReluCUDAFunctor = phi::funcs::ReluCUDAFunctor<T>;
Q
qijun 已提交
468

Q
qijun 已提交
469
template <typename T>
470
struct SqrtGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
471 472 473
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
C
chengduo 已提交
474
    dx.device(d) = static_cast<T>(0.5) * dout / out;
Q
qijun 已提交
475
  }
476

477 478 479
  static constexpr ActBwdOpFwdDeps FwdDeps() {
    return ActBwdOpFwdDeps::kDepOut;
  }
Q
qijun 已提交
480 481
};

Z
zhoukunsheng 已提交
482 483 484 485 486
template <typename T>
struct RsqrtGradFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
487
    dx.device(d) = static_cast<T>(-0.5) * dout * out * out * out;
Z
zhoukunsheng 已提交
488
  }
Z
zhoukunsheng 已提交
489

490 491 492
  static constexpr ActBwdOpFwdDeps FwdDeps() {
    return ActBwdOpFwdDeps::kDepOut;
  }
Z
zhoukunsheng 已提交
493 494
};

D
dzhwinter 已提交
495 496 497
// ceil(x) = ceiling(x)
template <typename T>
struct CeilFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
498 499 500
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.ceil();
D
dzhwinter 已提交
501 502 503 504 505
  }
};

template <typename T>
struct ZeroGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
506 507 508
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
Z
Zeng Jinle 已提交
509
    dx.device(d) = static_cast<T>(0) * out;
D
dzhwinter 已提交
510
  }
511

512 513 514
  static constexpr ActBwdOpFwdDeps FwdDeps() {
    return ActBwdOpFwdDeps::kNoDeps;
  }
D
dzhwinter 已提交
515 516 517 518 519
};

// floor(x) = flooring(x)
template <typename T>
struct FloorFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
520 521
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
Q
Qiao Longfei 已提交
522
    out.device(d) = x.floor();
D
dzhwinter 已提交
523 524 525 526 527 528
  }
};

// round(x) = [x]
template <typename T>
struct RoundFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
529 530 531
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.round();
D
dzhwinter 已提交
532 533 534
  }
};

535
template <typename T>
536
struct ReciprocalGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
537 538 539 540
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * static_cast<T>(-1) * out * out;
Q
qijun 已提交
541
  }
542

543 544 545
  static constexpr ActBwdOpFwdDeps FwdDeps() {
    return ActBwdOpFwdDeps::kDepOut;
  }
Q
qijun 已提交
546 547 548
};

// log(x) = natural logarithm of x
549 550
template <typename T>
struct LogFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
551 552 553
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.log();
Q
qijun 已提交
554 555 556
  }
};

557
template <typename T>
558
struct LogGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
559 560 561 562
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * (static_cast<T>(1) / x);
Q
qijun 已提交
563
  }
564

565
  static constexpr ActBwdOpFwdDeps FwdDeps() { return ActBwdOpFwdDeps::kDepX; }
Q
qijun 已提交
566 567
};

J
joejiong 已提交
568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
// log2(x) = logarithm to the base 2 of the elements of x
template <typename T>
struct Log2Functor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.log() / static_cast<T>(log(2));
  }
};

// the gradient of log2(x) is 1/(x*ln(2))
template <typename T>
struct Log2GradFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * static_cast<T>(1) / (x * static_cast<T>(log(2)));
  }

586
  static constexpr ActBwdOpFwdDeps FwdDeps() { return ActBwdOpFwdDeps::kDepX; }
J
joejiong 已提交
587 588
};

J
joejiong 已提交
589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606
// log10(x) = logarithm to the base 10 of the elements of x
template <typename T>
struct Log10Functor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.log() / static_cast<T>(log(10));
  }
};

// the gradient of log10(x) is 1/(x*ln(10))
template <typename T>
struct Log10GradFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * static_cast<T>(1) / (x * static_cast<T>(log(10)));
  }

607
  static constexpr ActBwdOpFwdDeps FwdDeps() { return ActBwdOpFwdDeps::kDepX; }
J
joejiong 已提交
608 609
};

610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626
// log1p(x) = natural logarithm of x+1
template <typename T>
struct Log1pFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = (static_cast<T>(1) + x).log();
  }
};

template <typename T>
struct Log1pGradFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * (static_cast<T>(1) / (x + static_cast<T>(1)));
  }

627
  static constexpr ActBwdOpFwdDeps FwdDeps() { return ActBwdOpFwdDeps::kDepX; }
628 629
};

630
template <typename T>
631
struct SquareGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
632 633 634 635
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * static_cast<T>(2) * x;
636
  }
637

638
  static constexpr ActBwdOpFwdDeps FwdDeps() { return ActBwdOpFwdDeps::kDepX; }
639 640
};

641 642 643 644 645 646 647 648 649
// relu6(x) = min(max(0, x), 6)
template <typename T>
struct Relu6Functor : public BaseActivationFunctor<T> {
  float threshold;

  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }

F
fengjiayi 已提交
650 651 652
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) =
Y
Yu Yang 已提交
653
        x.cwiseMax(static_cast<T>(0)).cwiseMin(static_cast<T>(threshold));
654 655 656 657 658 659 660 661 662
  }
};

template <typename T>
struct Relu6GradFunctor : public BaseActivationFunctor<T> {
  float threshold;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }
F
fengjiayi 已提交
663 664 665
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
D
dzhwinter 已提交
666 667 668 669
    dx.device(d) =
        dout *
        ((out > static_cast<T>(0)) * (out < static_cast<T>(threshold)))
            .template cast<T>();
670
  }
671

672 673 674
  static constexpr ActBwdOpFwdDeps FwdDeps() {
    return ActBwdOpFwdDeps::kDepOut;
  }
675 676
};

H
huangjun12 已提交
677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718
// HardSwish = min(max(0, x+3), 6) * x / 6
template <typename T>
struct HardSwishFunctor : public BaseActivationFunctor<T> {
  float threshold;
  float scale;
  float offset;

  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}, {"scale", &scale}, {"offset", &offset}};
  }

  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = (x + static_cast<T>(offset))
                        .cwiseMax(static_cast<T>(0))
                        .cwiseMin(static_cast<T>(threshold)) *
                    x / static_cast<T>(scale);
  }
};

template <typename T>
struct HardSwishGradFunctor : public BaseActivationFunctor<T> {
  float threshold;
  float scale;
  float offset;

  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}, {"scale", &scale}, {"offset", &offset}};
  }
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    auto tmp = ((x + static_cast<T>(offset)) < static_cast<T>(threshold))
                   .template cast<T>();
    dx.device(d) =
        dout *
        (((x + static_cast<T>(offset)) > static_cast<T>(0)).template cast<T>() *
             (static_cast<T>(2) * x + static_cast<T>(offset)) /
             static_cast<T>(scale) * tmp +
         static_cast<T>(1) * (static_cast<T>(1) - tmp));
  }

719
  static constexpr ActBwdOpFwdDeps FwdDeps() { return ActBwdOpFwdDeps::kDepX; }
H
huangjun12 已提交
720 721
};

722 723 724 725
// For numerical stability, using the following formula instead of
// d(softplus(x))/dx = 1 / (1 + exp(-x))
// d(softplus(x))/dx = 1 / (1 + exp(-beta * x)) when beta * x <= threshold(beta
// = 1, threshold = 20 by default), otherwise x
K
kexinzhao 已提交
726 727
template <typename T>
struct SoftplusGradFunctor : public BaseActivationFunctor<T> {
728 729 730 731 732 733
  float beta;
  float threshold;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"beta", &beta}, {"threshold", &threshold}};
  }

F
fengjiayi 已提交
734 735 736
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) {
737
    auto x_beta = static_cast<T>(beta) * x;
F
fengjiayi 已提交
738
    dx.device(d) =
739 740
        (x_beta > static_cast<T>(threshold))
            .select(dout, dout / (static_cast<T>(1) + (-x_beta).exp()));
K
kexinzhao 已提交
741
  }
742

743
  static constexpr ActBwdOpFwdDeps FwdDeps() { return ActBwdOpFwdDeps::kDepX; }
K
kexinzhao 已提交
744 745
};

746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
// dx = dout * (tanh(sp) + x * (1 - tanh(sp) ** 2) * (1 - exp(-sp)))
// sp = softplus(x)
template <typename T>
struct MishGradFunctor : public BaseActivationFunctor<T> {
  float threshold;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }

  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) {
    auto sp = (x > static_cast<T>(threshold))
                  .select(x, (static_cast<T>(1) + x.exp()).log());
    auto gsp = static_cast<T>(1) - (-sp).exp();
    auto tsp = sp.tanh();
    dx.device(d) = dout * (tsp + x * (static_cast<T>(1) - tsp * tsp) * gsp);
  }

765
  static constexpr ActBwdOpFwdDeps FwdDeps() { return ActBwdOpFwdDeps::kDepX; }
766 767
};

768 769 770
// d(softsign(x))/dx = 1 / (1 + |x|)^2
// Taken from https://en.wikipedia.org/wiki/Activation_function
template <typename T>
771
struct SoftsignGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
772 773 774
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) {
775
    dx.device(d) =
F
fengjiayi 已提交
776
        dout * (static_cast<T>(1) / (static_cast<T>(1) + x.abs()).square());
777
  }
778

779
  static constexpr ActBwdOpFwdDeps FwdDeps() { return ActBwdOpFwdDeps::kDepX; }
780 781
};

782 783 784 785 786 787
template <typename T>
struct SoftReluFunctor : public BaseActivationFunctor<T> {
  float threshold;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }
788

F
fengjiayi 已提交
789 790
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
Y
Yu Yang 已提交
791 792
    auto tmp = static_cast<T>(threshold);
    auto temp = x.cwiseMax(-tmp).cwiseMin(tmp);
F
fengjiayi 已提交
793
    out.device(d) = (static_cast<T>(1) + temp.exp()).log();
794 795 796
  }
};

797 798 799 800 801 802
template <typename T>
struct SoftReluGradFunctor : public BaseActivationFunctor<T> {
  float threshold;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }
F
fengjiayi 已提交
803 804 805
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
Y
Yu Yang 已提交
806
    auto tmp = static_cast<T>(threshold);
Z
Zeng Jinle 已提交
807
    auto temp = ((out > -tmp) * (out < tmp)).template cast<T>();
F
fengjiayi 已提交
808
    dx.device(d) = dout * (static_cast<T>(1) - (-out).exp()) * temp;
809
  }
810

811 812 813
  static constexpr ActBwdOpFwdDeps FwdDeps() {
    return ActBwdOpFwdDeps::kDepOut;
  }
814 815
};

Z
zhupengyang 已提交
816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850
template <typename DeviceContext, typename T>
class ELUGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* X = context.Input<framework::Tensor>("X");
    auto* Out = context.Input<framework::Tensor>("Out");
    auto* dOut =
        context.Input<framework::Tensor>(framework::GradVarName("Out"));
    auto* dX = context.Output<framework::Tensor>(framework::GradVarName("X"));
    const float alpha = context.Attr<float>("alpha");
    dX->mutable_data<T>(context.GetPlace());

    auto x = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(X, "Input", "X", "elu_grad"));
    auto out = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(Out, "Input", "Out", "elu_grad"));
    auto dout = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(dOut, "Input", "dOut", "elu_grad"));
    auto dx = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(dX, "Output", "dX", "elu_grad"));
    auto* place =
        context.template device_context<DeviceContext>().eigen_device();

    if (alpha > 0) {
      ELUGradFunctor<T> functor;
      functor.alpha = alpha;
      functor(*place, x, out, dout, dx);
    } else {
      ELUGradNegativeAlphaFunctor<T> functor;
      functor.alpha = alpha;
      functor(*place, x, out, dout, dx);
    }
  }
};

851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892
template <typename T>
struct CELUFunctor : public BaseActivationFunctor<T> {
  float alpha;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"alpha", &alpha}};
  }

  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) =
        (x < static_cast<T>(0))
            .select(static_cast<T>(alpha) *
                        ((x / static_cast<T>(alpha)).exp() - static_cast<T>(1)),
                    x);
  }
};

template <typename T>
struct CELUGradFunctor : public BaseActivationFunctor<T> {
  float alpha;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"alpha", &alpha}};
  }
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    auto temp_a_pos = static_cast<T>(alpha > 0);
    auto temp_a_neg = static_cast<T>(alpha <= 0);
    auto temp_x_pos = (x > static_cast<T>(0)).template cast<T>();
    auto temp_x_neg = (x <= static_cast<T>(0)).template cast<T>();

    // dx = dout, if alpha > 0 and x > 0
    // dx = dout * (x/alpha).exp(), if alpha > 0 and x <= 0
    // dx = dout , if alpha < 0 and x > 0
    // dx = dout * (x/alpha).exp(), if alpha < 0 and x <=0
    dx.device(d) =
        dout * temp_a_pos * temp_x_pos +
        dout * (x / static_cast<T>(alpha)).exp() * temp_a_pos * temp_x_neg +
        dout * temp_a_neg * temp_x_pos +
        dout * (x / static_cast<T>(alpha)).exp() * temp_a_neg * temp_x_neg;
  }

893
  static constexpr ActBwdOpFwdDeps FwdDeps() { return ActBwdOpFwdDeps::kDepX; }
894 895
};

Q
QI JUN 已提交
896
// FIXME(qijun) https://github.com/PaddlePaddle/Paddle/issues/5198
897 898 899 900 901 902
template <typename T>
struct PowFunctor : public BaseActivationFunctor<T> {
  float factor;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"factor", &factor}};
  }
F
fengjiayi 已提交
903 904 905
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.pow(static_cast<T>(factor));
906 907 908
  }
};

909 910 911 912 913 914
template <typename T>
struct PowGradFunctor : public BaseActivationFunctor<T> {
  float factor;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"factor", &factor}};
  }
F
fengjiayi 已提交
915 916 917 918
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * static_cast<T>(factor) *
C
chengduo 已提交
919
                   x.pow(static_cast<T>(factor) - static_cast<T>(1));
920
  }
921

922
  static constexpr ActBwdOpFwdDeps FwdDeps() { return ActBwdOpFwdDeps::kDepX; }
923 924
};

W
wangzhen38 已提交
925 926 927 928 929 930 931 932 933 934 935 936
template <typename T>
struct LogitGradFunctor {
  template <typename Device, typename X, typename dOut, typename dX, typename P>
  void operator()(Device d, X x, dOut dout, dX dx, P p, float eps) const {
    // logit(x)' = 1/(x*(1-x))
    dx.device(d) =
        (x < static_cast<T>(eps) || x > static_cast<T>(1.0 - eps))
            .select(p.constant(static_cast<T>(0)),
                    dout * (static_cast<T>(1) / ((static_cast<T>(1) - x) * x)));
  }
};

937 938 939 940 941 942 943
template <typename T>
struct STanhGradFunctor : public BaseActivationFunctor<T> {
  float scale_a;
  float scale_b;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"scale_a", &scale_a}, {"scale_b", &scale_b}};
  }
944

F
fengjiayi 已提交
945 946 947
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
Y
Yu Yang 已提交
948 949 950
    auto a = static_cast<T>(scale_a);
    auto b = static_cast<T>(scale_b);
    auto temp = (a * x).tanh() * (a * x).tanh();
F
fengjiayi 已提交
951
    dx.device(d) = dout * a * b * (static_cast<T>(1) - temp);
Q
qijun 已提交
952
  }
953

954
  static constexpr ActBwdOpFwdDeps FwdDeps() { return ActBwdOpFwdDeps::kDepX; }
Q
qijun 已提交
955 956
};

957 958 959 960 961 962 963 964
template <typename T>
struct HardSigmoidFunctor : public BaseActivationFunctor<T> {
  float slope;
  float offset;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"slope", &slope}, {"offset", &offset}};
  }

F
fengjiayi 已提交
965 966
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
967
    auto temp = x * static_cast<T>(slope) + static_cast<T>(offset);
F
fengjiayi 已提交
968 969
    out.device(d) =
        temp.cwiseMax(static_cast<T>(0)).cwiseMin(static_cast<T>(1));
970 971 972 973 974 975 976 977 978 979
  }
};

template <typename T>
struct HardSigmoidGradFunctor : public BaseActivationFunctor<T> {
  float slope;
  float offset;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"slope", &slope}, {"offset", &offset}};
  }
F
fengjiayi 已提交
980 981 982 983 984 985 986
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout *
                   ((out > static_cast<T>(0)) * (out < static_cast<T>(1)))
                       .template cast<T>() *
                   static_cast<T>(slope);
987
  }
988

989 990 991
  static constexpr ActBwdOpFwdDeps FwdDeps() {
    return ActBwdOpFwdDeps::kDepOut;
  }
992 993
};

A
Abhinav Arora 已提交
994 995 996 997 998 999 1000
template <typename T>
struct SwishFunctor : public BaseActivationFunctor<T> {
  float beta;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"beta", &beta}};
  }

F
fengjiayi 已提交
1001 1002 1003
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x / (static_cast<T>(1) + (static_cast<T>(-beta) * x).exp());
A
Abhinav Arora 已提交
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
  }
};

template <typename T>
struct SwishGradFunctor : public BaseActivationFunctor<T> {
  float beta;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"beta", &beta}};
  }

F
fengjiayi 已提交
1014 1015
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
1016
  void operator()(Device d, X x, Out fake_out, dOut dout, dX dx) const {
A
Abhinav Arora 已提交
1017
    auto temp1 = static_cast<T>(1) /
1018
                 (static_cast<T>(1) + (static_cast<T>(-beta) * x).exp());
1019
    auto out = x * temp1;
D
dzhwinter 已提交
1020 1021
    auto temp2 = temp1 * (static_cast<T>(1) - (static_cast<T>(beta) * out));
    dx.device(d) = dout * ((static_cast<T>(beta) * out) + temp2);
A
Abhinav Arora 已提交
1022
  }
1023

1024
  static constexpr ActBwdOpFwdDeps FwdDeps() { return ActBwdOpFwdDeps::kDepX; }
A
Abhinav Arora 已提交
1025 1026
};

Z
Zhong Hui 已提交
1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
template <typename T>
struct AbsGradGradFunctor : public BaseActivationFunctor<T> {
  template <typename Device>
  void operator()(const Device& dev, const framework::Tensor* X,
                  const framework::Tensor* Out, const framework::Tensor* ddX,
                  framework::Tensor* ddOut, framework::Tensor* dOut,
                  framework::Tensor* dX) const {
    auto* d = dev.eigen_device();
    auto ddx = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(ddX, "Input", "DDX", "AbsGradGrad"));
    auto x = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(X, "Input", "X", "AbsGradGrad"));
    if (ddOut) {
      auto ddout = framework::EigenVector<T>::Flatten(
          GET_DATA_SAFELY(ddOut, "Output", "DDOut", "AbsGradGrad"));
      ddout.device(*d) = ddx * x.sign();
    }
  }
1045
  static constexpr ActBwdOpFwdDeps FwdDeps() { return ActBwdOpFwdDeps::kDepX; }
1046 1047
};

1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
template <typename T>
struct CELUGradGradFunctor : public BaseActivationFunctor<T> {
  float alpha;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"alpha", &alpha}};
  }
  template <typename Device>
  void operator()(const Device& dev, const framework::Tensor* X,
                  const framework::Tensor* ddX, framework::Tensor* ddOut,
                  const framework::Tensor* dOut, framework::Tensor* dX) const {
    auto* d = dev.eigen_device();
    auto ddx = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(ddX, "Input", "DDX", "CELUGradGrad"));
    auto x = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(X, "Input", "X", "CELUGradGrad"));

    if (dX) {
      auto dx = framework::EigenVector<T>::Flatten(
          GET_DATA_SAFELY(dX, "Output", "DX", "CELUGradGrad"));
      auto dout = framework::EigenVector<T>::Flatten(
          GET_DATA_SAFELY(dOut, "Output", "DOut", "CELUGradGrad"));
      dx.device(*d) = ddx * dout / static_cast<T>(alpha) *
                      (x / static_cast<T>(alpha)).exp() *
                      (x <= static_cast<T>(0)).template cast<T>();
    }

    if (ddOut) {
      auto ddout = framework::EigenVector<T>::Flatten(
          GET_DATA_SAFELY(ddOut, "Output", "DDOut", "CELUGradGrad"));
      ddout.device(*d) = ddx *
                         ((x > static_cast<T>(0)).template cast<T>() +
                          (x / static_cast<T>(alpha)).exp() *
                              (x <= static_cast<T>(0)).template cast<T>())
                             .template cast<T>();
    }
  }
1084
  static constexpr ActBwdOpFwdDeps FwdDeps() { return ActBwdOpFwdDeps::kDepX; }
1085 1086
};

L
lvmengsi 已提交
1087 1088 1089 1090 1091 1092 1093
template <typename T>
struct SqrtGradGradFunctor : public BaseActivationFunctor<T> {
  template <typename Device>
  void operator()(const Device& dev, const framework::Tensor* Out,
                  const framework::Tensor* ddX, framework::Tensor* ddOut,
                  framework::Tensor* dOut, const framework::Tensor* dX) const {
    auto* d = dev.eigen_device();
1094 1095 1096 1097
    auto ddx = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(ddX, "Input", "DDX", "SqrtGradGrad"));
    auto out = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(Out, "Output", "Out", "SqrtGradGrad"));
1098 1099
    // sqrt GradGrad: ddy = 0.5 * ddx / y, dy = -1 * dx * ddx
    // calculate dy first, so ddy can inplace ddx
L
lvmengsi 已提交
1100
    if (dOut) {
1101 1102 1103 1104
      auto dx = framework::EigenVector<T>::Flatten(
          GET_DATA_SAFELY(dX, "Output", "DX", "SqrtGradGrad"));
      auto dout = framework::EigenVector<T>::Flatten(
          GET_DATA_SAFELY(dOut, "Output", "DOut", "SqrtGradGrad"));
L
lvmengsi 已提交
1105 1106
      dout.device(*d) = dx * ddx * static_cast<T>(-1) / out;
    }
1107
    if (ddOut) {
1108 1109
      auto ddout = framework::EigenVector<T>::Flatten(
          GET_DATA_SAFELY(ddOut, "Output", "DDOut", "SqrtGradGrad"));
1110 1111
      ddout.device(*d) = ddx * static_cast<T>(0.5) / out;
    }
L
lvmengsi 已提交
1112
  }
1113 1114 1115
  static constexpr ActBwdOpFwdDeps FwdDeps() {
    return ActBwdOpFwdDeps::kDepOut;
  }
L
lvmengsi 已提交
1116 1117
};

W
whs 已提交
1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143
template <typename T>
struct RsqrtGradGradFunctor : public BaseActivationFunctor<T> {
  template <typename Device>
  void operator()(const Device& dev, const framework::Tensor* Out,
                  const framework::Tensor* ddX, framework::Tensor* ddOut,
                  framework::Tensor* dOut, const framework::Tensor* dX) const {
    auto* d = dev.eigen_device();
    auto ddx = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(ddX, "Input", "DDX", "RsqrtGradGrad"));
    auto out = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(Out, "Output", "Out", "RsqrtGradGrad"));

    // rsqrt GradGrad: ddy = -0.5 * ddx * y * y * y, dy = (3/y) * dx * ddx
    if (dOut) {
      auto dx = framework::EigenVector<T>::Flatten(
          GET_DATA_SAFELY(dX, "Output", "DX", "RsqrtGradGrad"));
      auto dout = framework::EigenVector<T>::Flatten(
          GET_DATA_SAFELY(dOut, "Output", "DOut", "RsqrtGradGrad"));
      dout.device(*d) = (static_cast<T>(3.0) / out) * dx * ddx;
    }
    if (ddOut) {
      auto ddout = framework::EigenVector<T>::Flatten(
          GET_DATA_SAFELY(ddOut, "Output", "DDOut", "RsqrtGradGrad"));
      ddout.device(*d) = ddx * static_cast<T>(-0.5) * out * out * out;
    }
  }
1144 1145 1146
  static constexpr ActBwdOpFwdDeps FwdDeps() {
    return ActBwdOpFwdDeps::kDepOut;
  }
W
whs 已提交
1147 1148
};

1149 1150 1151 1152 1153 1154 1155
template <typename T>
struct SquareGradGradFunctor : public BaseActivationFunctor<T> {
  template <typename Device>
  void operator()(const Device& dev, const framework::Tensor* X,
                  const framework::Tensor* ddX, framework::Tensor* ddOut,
                  const framework::Tensor* dOut, framework::Tensor* dX) const {
    auto* d = dev.eigen_device();
1156 1157 1158 1159
    auto ddx = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(ddX, "Input", "DDX", "SquareGradGrad"));
    auto x = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(X, "Input", "X", "SquareGradGrad"));
1160 1161
    // square GradGrad: ddy=2x*ddx, dx=2dy*ddx
    // calculate dx first, so ddy can inplace ddx
1162
    if (dX) {
1163 1164 1165 1166
      auto dx = framework::EigenVector<T>::Flatten(
          GET_DATA_SAFELY(dX, "Output", "DX", "SquareGradGrad"));
      auto dout = framework::EigenVector<T>::Flatten(
          GET_DATA_SAFELY(dOut, "Output", "DOut", "SquareGradGrad"));
1167 1168
      dx.device(*d) = ddx * static_cast<T>(2) * dout;
    }
1169
    if (ddOut) {
1170 1171
      auto ddout = framework::EigenVector<T>::Flatten(
          GET_DATA_SAFELY(ddOut, "Output", "DDOut", "SquareGradGrad"));
1172 1173
      ddout.device(*d) = ddx * static_cast<T>(2) * x;
    }
1174
  }
1175
  static constexpr ActBwdOpFwdDeps FwdDeps() { return ActBwdOpFwdDeps::kDepX; }
1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
};

// TODO(dengkaipeng): double gradient calculation for Square/Sqrt need
// DOut(dy) as input(not output), tensor extraction is different from
// others. Impliment extraction kernel seperately here.
inline void ExtractDoubleGradTensorWithInputDOut(
    const framework::ExecutionContext& ctx, const framework::Tensor** X,
    const framework::Tensor** ddX, framework::Tensor** dX,
    const framework::Tensor** dOut, framework::Tensor** ddOut) {
  // extract ddX(output), ddOut(input)
  auto ddx_var = ctx.InputVar("DDX");
  auto ddo_var = ctx.OutputVar("DDOut");
1188 1189 1190 1191
  PADDLE_ENFORCE_NOT_NULL(
      ddx_var, platform::errors::NotFound(
                   "Cannot get input Variable Out, variable name = %s",
                   ctx.InputName("DDX")));
1192 1193 1194 1195
  *ddX = ctx.Input<framework::Tensor>("DDX");
  if (ddo_var) {
    *ddOut = ctx.Output<framework::Tensor>("DDOut");
  }
1196 1197 1198 1199 1200
  PADDLE_ENFORCE_NOT_NULL(
      ddX,
      platform::errors::NotFound(
          "Cannot get the tensor from the Variable DDX, variable name = %s",
          ctx.OutputName("DDX")));
1201 1202 1203

  // extract x(input), dx(output)
  auto x_var = ctx.InputVar("X");
1204 1205
  PADDLE_ENFORCE_NOT_NULL(
      x_var, platform::errors::NotFound(
1206
                 "Cannot get input Variable Out, variable name = %s",
1207
                 ctx.InputName("X")));
1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220
  auto dx_var = ctx.OutputVar("DX");
  *X = ctx.Input<framework::Tensor>("X");
  if (dx_var) {
    *dX = ctx.Output<framework::Tensor>("DX");
  }

  // extract dOut(input)
  auto dout_var = ctx.InputVar("DOut");
  if (dout_var) {
    *dOut = ctx.Input<framework::Tensor>("DOut");
  }
}

1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258
template <typename DeviceContext, typename Functor>
class SigmoidDoubleGradKernel
    : public framework::OpKernel<typename Functor::ELEMENT_TYPE> {
 public:
  using T = typename Functor::ELEMENT_TYPE;
  void Compute(const framework::ExecutionContext& ctx) const override {
    const framework::Tensor *Out, *ddX, *dOut;
    framework::Tensor *dOutNew, *ddOut;
    Out = ddX = dOut = nullptr;
    dOutNew = ddOut = nullptr;
    // extract ddx(input) and out(input)
    ddX = ctx.Input<framework::Tensor>("DDX");
    Out = ctx.Input<framework::Tensor>("Out");
    PADDLE_ENFORCE_NOT_NULL(
        ddX, platform::errors::NotFound(
                 "Cannot get input Variable ddX, variable name = %s",
                 ctx.InputName("DDX")));
    PADDLE_ENFORCE_NOT_NULL(
        Out, platform::errors::NotFound(
                 "Cannot get input Variable Out, variable name = %s",
                 ctx.InputName("Out")));
    // set output ddout
    ddOut = ctx.Output<framework::Tensor>("DDOut");
    // extract dOut(intput)
    dOut = ctx.Input<framework::Tensor>("DOut");
    PADDLE_ENFORCE_NOT_NULL(
        dOut, platform::errors::NotFound(
                  "Cannot get input Variable dOut, variable name = %s",
                  ctx.InputName("DOut")));
    dOutNew = ctx.Output<framework::Tensor>("DOutNew");
    if (dOutNew) dOutNew->mutable_data<T>(Out->dims(), ctx.GetPlace());
    if (ddOut) ddOut->mutable_data<T>(Out->dims(), ctx.GetPlace());
    auto& place = ctx.template device_context<DeviceContext>();
    Functor functor;
    functor(place, Out, ddX, dOut, dOutNew, ddOut);
  }
};

1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
// Out, DDX, DOut, D_DDOut, D_DOut_New   // input
// D_OutNew, D_DOut, D_DDx               // output
template <typename DeviceContext, typename Functor>
class SigmoidTripleGradKernel
    : public framework::OpKernel<typename Functor::ELEMENT_TYPE> {
 public:
  using T = typename Functor::ELEMENT_TYPE;
  void Compute(const framework::ExecutionContext& ctx) const override {
    const framework::Tensor *Out, *ddX, *dOut, *d_ddOut, *d_dOutNew;
    framework::Tensor *d_OutNew, *d_dOut, *d_ddx;
    Out = ddX = dOut = d_ddOut = d_dOutNew = nullptr;
    d_OutNew = d_dOut = d_ddx = nullptr;

    // extract ddx(input), out(input), dOut(input), d_ddOut(input),
    // d_dOutNew(input)
    ddX = ctx.Input<framework::Tensor>("DDX");
    Out = ctx.Input<framework::Tensor>("Out");
    dOut = ctx.Input<framework::Tensor>("DOut");
    d_ddOut = ctx.Input<framework::Tensor>("D_DDOut");
    d_dOutNew = ctx.Input<framework::Tensor>("D_DOut_New");

    PADDLE_ENFORCE_NOT_NULL(
        ddX, platform::errors::NotFound(
                 "Cannot get input Variable ddX, variable name = %s",
                 ctx.InputName("DDX")));
    PADDLE_ENFORCE_NOT_NULL(
        Out, platform::errors::NotFound(
                 "Cannot get input Variable Out, variable name = %s",
                 ctx.InputName("Out")));
    PADDLE_ENFORCE_NOT_NULL(
        dOut, platform::errors::NotFound(
                  "Cannot get input Variable dOut, variable name = %s",
                  ctx.InputName("DOut")));
    PADDLE_ENFORCE_NOT_NULL(
        d_ddOut, platform::errors::NotFound(
                     "Cannot get input Variable d_ddOut, variable name = %s",
                     ctx.InputName("D_DDOut")));
    PADDLE_ENFORCE_NOT_NULL(
        d_dOutNew,
        platform::errors::NotFound(
            "Cannot get input Variable d_dOutNew, variable name = %s",
            ctx.InputName("D_DOutNew")));

    // set output d_OutNew、d_dOut、d_ddx
    d_dOut = ctx.Output<framework::Tensor>("D_DOut");
    d_OutNew = ctx.Output<framework::Tensor>("D_OutNew");
    d_ddx = ctx.Output<framework::Tensor>("D_DDx");

    if (d_dOut) d_dOut->mutable_data<T>(Out->dims(), ctx.GetPlace());
    if (d_OutNew) d_OutNew->mutable_data<T>(Out->dims(), ctx.GetPlace());
    if (d_ddx) d_ddx->mutable_data<T>(ddX->dims(), ctx.GetPlace());
    auto& place = ctx.template device_context<DeviceContext>();
    Functor functor;
    functor(place, Out, ddX, dOut, d_ddOut, d_dOutNew,  // input
            d_dOut, d_OutNew, d_ddx);                   // output
  }
};

1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368
template <typename DeviceContext, typename Functor>
class TanhDoubleGradKernel
    : public framework::OpKernel<typename Functor::ELEMENT_TYPE> {
 public:
  using T = typename Functor::ELEMENT_TYPE;
  void Compute(const framework::ExecutionContext& ctx) const override {
    const framework::Tensor *Out, *ddX, *dOut;
    framework::Tensor *dOutNew, *ddOut;
    Out = ddX = dOut = nullptr;
    dOutNew = ddOut = nullptr;

    // extract ddx(input) and out(input)
    auto ddx_var = ctx.InputVar("DDX");
    auto out_var = ctx.InputVar("Out");
    PADDLE_ENFORCE_NOT_NULL(
        ddx_var, platform::errors::NotFound(
                     "Cannot get input Variable ddx, variable name = %s",
                     ctx.InputName("DDX")));
    PADDLE_ENFORCE_NOT_NULL(
        out_var, platform::errors::NotFound(
                     "Cannot get input Variable out, variable name = %s",
                     ctx.InputName("Out")));
    ddX = ctx.Input<framework::Tensor>("DDX");
    Out = ctx.Input<framework::Tensor>("Out");

    // set output ddout
    auto ddout_var = ctx.OutputVar("DDOut");
    if (ddout_var) {
      ddOut = ctx.Output<framework::Tensor>("DDOut");
    }

    // extract dOut(intput)
    auto dout_var = ctx.InputVar("DOut");
    PADDLE_ENFORCE_NOT_NULL(
        dout_var, platform::errors::NotFound(
                      "Cannot get input Variable dout_var, variable name = %s",
                      ctx.InputName("DOut")));
    dOut = ctx.Input<framework::Tensor>("DOut");

    // set output dout_new
    auto dout_new_var = ctx.OutputVar("DOutNew");
    if (dout_new_var) {
      dOutNew = ctx.Output<framework::Tensor>("DOutNew");
    }

    if (dOutNew) dOutNew->mutable_data<T>(Out->dims(), ctx.GetPlace());
    if (ddOut) ddOut->mutable_data<T>(Out->dims(), ctx.GetPlace());
    auto& place = ctx.template device_context<DeviceContext>();
    Functor functor;
    functor(place, Out, ddX, dOut, dOutNew, ddOut);
  }
};
1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425

template <typename DeviceContext, typename Functor>
class TanhTripeGradKernel
    : public framework::OpKernel<typename Functor::ELEMENT_TYPE> {
 public:
  using T = typename Functor::ELEMENT_TYPE;
  void Compute(const framework::ExecutionContext& ctx) const override {
    const framework::Tensor *Out, *ddX, *dOut, *d_ddOut, *d_dOutNew;
    framework::Tensor *d_OutNew, *d_dOut, *d_ddx;
    Out = ddX = dOut = d_ddOut = d_dOutNew = nullptr;
    d_OutNew = d_dOut = d_ddx = nullptr;

    // extract ddx(input), out(input), dOut(input), d_ddOut(input),
    // d_dOutNew(input)
    ddX = ctx.Input<framework::Tensor>("DDX");
    Out = ctx.Input<framework::Tensor>("Out");
    dOut = ctx.Input<framework::Tensor>("DOut");
    d_ddOut = ctx.Input<framework::Tensor>("D_DDOut");
    d_dOutNew = ctx.Input<framework::Tensor>("D_DOut_New");

    PADDLE_ENFORCE_NOT_NULL(
        ddX, platform::errors::NotFound(
                 "Cannot get input Variable ddX, variable name = %s",
                 ctx.InputName("DDX")));
    PADDLE_ENFORCE_NOT_NULL(
        Out, platform::errors::NotFound(
                 "Cannot get input Variable Out, variable name = %s",
                 ctx.InputName("Out")));
    PADDLE_ENFORCE_NOT_NULL(
        dOut, platform::errors::NotFound(
                  "Cannot get input Variable dOut, variable name = %s",
                  ctx.InputName("DOut")));
    PADDLE_ENFORCE_NOT_NULL(
        d_ddOut, platform::errors::NotFound(
                     "Cannot get input Variable d_ddOut, variable name = %s",
                     ctx.InputName("D_DDOut")));
    PADDLE_ENFORCE_NOT_NULL(
        d_dOutNew,
        platform::errors::NotFound(
            "Cannot get input Variable d_dOutNew, variable name = %s",
            ctx.InputName("D_DOutNew")));

    // set output d_OutNew、d_dOut、d_ddx
    d_dOut = ctx.Output<framework::Tensor>("D_DOut");
    d_OutNew = ctx.Output<framework::Tensor>("D_OutNew");
    d_ddx = ctx.Output<framework::Tensor>("D_DDx");

    if (d_dOut) d_dOut->mutable_data<T>(Out->dims(), ctx.GetPlace());
    if (d_OutNew) d_OutNew->mutable_data<T>(Out->dims(), ctx.GetPlace());
    if (d_ddx) d_ddx->mutable_data<T>(ddX->dims(), ctx.GetPlace());
    auto& place = ctx.template device_context<DeviceContext>();
    Functor functor;
    functor(place, Out, ddX, dOut, d_ddOut, d_dOutNew,  // input
            d_dOut, d_OutNew, d_ddx);                   // output
  }
};

1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438
template <typename DeviceContext, typename Functor>
class SquareDoubleGradKernel
    : public framework::OpKernel<typename Functor::ELEMENT_TYPE> {
 public:
  using T = typename Functor::ELEMENT_TYPE;
  void Compute(const framework::ExecutionContext& ctx) const override {
    const framework::Tensor *X, *ddX, *dOut;
    X = ddX = dOut = nullptr;
    framework::Tensor *dX, *ddOut;
    dX = ddOut = nullptr;

    ExtractDoubleGradTensorWithInputDOut(ctx, &X, &ddX, &dX, &dOut, &ddOut);

L
lvmengsi 已提交
1439 1440
    if (dX) dX->mutable_data<T>(X->dims(), ctx.GetPlace());
    if (ddOut) ddOut->mutable_data<T>(ctx.GetPlace());
1441 1442 1443 1444 1445 1446 1447 1448

    auto& place = ctx.template device_context<DeviceContext>();

    Functor functor;
    functor(place, X, ddX, ddOut, dOut, dX);
  }
};

1449 1450 1451 1452
template <typename DeviceContext, typename Functor>
class LogDoubleGradKernel
    : public SquareDoubleGradKernel<DeviceContext, Functor> {};

D
Double_V 已提交
1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479
template <typename DeviceContext, typename Functor>
class ELUDoubleGradKernel
    : public framework::OpKernel<typename Functor::ELEMENT_TYPE> {
 public:
  using T = typename Functor::ELEMENT_TYPE;
  void Compute(const framework::ExecutionContext& ctx) const override {
    const framework::Tensor *X, *ddX, *dOut;
    X = ddX = dOut = nullptr;
    framework::Tensor *dX, *ddOut;
    dX = ddOut = nullptr;

    ExtractDoubleGradTensorWithInputDOut(ctx, &X, &ddX, &dX, &dOut, &ddOut);

    if (dX) dX->mutable_data<T>(X->dims(), ctx.GetPlace());
    if (ddOut) ddOut->mutable_data<T>(ctx.GetPlace());

    auto& place = ctx.template device_context<DeviceContext>();

    Functor functor;
    auto attrs = functor.GetAttrs();
    for (auto& attr : attrs) {
      *attr.second = ctx.Attr<float>(attr.first);
    }
    functor(place, X, ddX, ddOut, dOut, dX);
  }
};

L
lvmengsi 已提交
1480
template <typename DeviceContext, typename Functor>
1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507
class CELUDoubleGradKernel
    : public framework::OpKernel<typename Functor::ELEMENT_TYPE> {
 public:
  using T = typename Functor::ELEMENT_TYPE;
  void Compute(const framework::ExecutionContext& ctx) const override {
    const framework::Tensor *X, *ddX, *dOut;
    X = ddX = dOut = nullptr;
    framework::Tensor *dX, *ddOut;
    dX = ddOut = nullptr;

    ExtractDoubleGradTensorWithInputDOut(ctx, &X, &ddX, &dX, &dOut, &ddOut);

    if (dX) dX->mutable_data<T>(X->dims(), ctx.GetPlace());
    if (ddOut) ddOut->mutable_data<T>(ctx.GetPlace());

    auto& place = ctx.template device_context<DeviceContext>();

    Functor functor;
    auto attrs = functor.GetAttrs();
    for (auto& attr : attrs) {
      *attr.second = ctx.Attr<float>(attr.first);
    }
    functor(place, X, ddX, ddOut, dOut, dX);
  }
};

template <typename DeviceContext, typename Functor>
L
lvmengsi 已提交
1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520
class SqrtDoubleGradKernel
    : public framework::OpKernel<typename Functor::ELEMENT_TYPE> {
 public:
  using T = typename Functor::ELEMENT_TYPE;
  void Compute(const framework::ExecutionContext& ctx) const override {
    const framework::Tensor *Out, *dX, *ddX;
    Out = dX = ddX = nullptr;
    framework::Tensor *ddOut, *dOut;
    ddOut = dOut = nullptr;

    // extract ddx(input), ddout(output)
    auto ddx_var = ctx.InputVar("DDX");
    auto ddo_var = ctx.OutputVar("DDOut");
1521 1522 1523 1524
    PADDLE_ENFORCE_NOT_NULL(
        ddx_var, platform::errors::NotFound(
                     "Cannot get input Variable DDX, variable name = %s",
                     ctx.InputName("DDX")));
L
lvmengsi 已提交
1525 1526 1527 1528
    ddX = ctx.Input<framework::Tensor>("DDX");
    if (ddo_var) {
      ddOut = ctx.Output<framework::Tensor>("DDOut");
    }
1529 1530 1531 1532
    PADDLE_ENFORCE_NOT_NULL(
        ddX, platform::errors::NotFound(
                 "Cannot get input Variable DDX, variable name = %s",
                 ctx.InputName("DDX")));
L
lvmengsi 已提交
1533 1534 1535

    // extract out(input), dout(output)
    auto out_var = ctx.InputVar("Out");
1536 1537 1538 1539
    PADDLE_ENFORCE_NOT_NULL(
        out_var, platform::errors::NotFound(
                     "Cannot get input Variable Out, variable name = %s",
                     ctx.InputName("Out")));
L
lvmengsi 已提交
1540 1541 1542 1543 1544 1545 1546 1547
    auto dout_var = ctx.OutputVar("DOut");
    Out = ctx.Input<framework::Tensor>("Out");
    if (dout_var) {
      dOut = ctx.Output<framework::Tensor>("DOut");
    }

    // extract dx(input)
    auto dx_var = ctx.InputVar("DX");
1548 1549 1550 1551
    PADDLE_ENFORCE_NOT_NULL(
        dx_var, platform::errors::NotFound(
                    "Cannot get input Variable DX, variable name = %s",
                    ctx.InputName("DX")));
L
lvmengsi 已提交
1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565
    if (dx_var) {
      dX = ctx.Input<framework::Tensor>("DX");
    }

    if (dOut) dOut->mutable_data<T>(Out->dims(), ctx.GetPlace());
    if (ddOut) ddOut->mutable_data<T>(Out->dims(), ctx.GetPlace());

    auto& place = ctx.template device_context<DeviceContext>();

    Functor functor;
    functor(place, Out, ddX, ddOut, dOut, dX);
  }
};

W
whs 已提交
1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626
// rsqrt Grad: dx = -0.5 * dy * y * y * y
// rsqrt GradGrad: ddy = -0.5 * ddx * y * y * y, dy = (3 / y) * dx * ddx
template <typename DeviceContext, typename Functor>
class RsqrtDoubleGradKernel
    : public framework::OpKernel<typename Functor::ELEMENT_TYPE> {
 public:
  using T = typename Functor::ELEMENT_TYPE;
  void Compute(const framework::ExecutionContext& ctx) const override {
    const framework::Tensor *Out, *dX, *ddX;
    Out = dX = ddX = nullptr;
    framework::Tensor *ddOut, *dOut;
    ddOut = dOut = nullptr;

    // extract ddx(input), ddout(output)
    auto ddx_var = ctx.InputVar("DDX");
    auto ddo_var = ctx.OutputVar("DDOut");
    PADDLE_ENFORCE_NOT_NULL(
        ddx_var, platform::errors::NotFound(
                     "Cannot get input Variable DDX, variable name = %s",
                     ctx.InputName("DDX")));
    ddX = ctx.Input<framework::Tensor>("DDX");
    if (ddo_var) {
      ddOut = ctx.Output<framework::Tensor>("DDOut");
    }
    PADDLE_ENFORCE_NOT_NULL(
        ddX, platform::errors::NotFound(
                 "Cannot get input Variable DDX, variable name = %s",
                 ctx.InputName("DDX")));

    // extract out(input), dout(output)
    auto out_var = ctx.InputVar("Out");
    PADDLE_ENFORCE_NOT_NULL(
        out_var, platform::errors::NotFound(
                     "Cannot get input Variable Out, variable name = %s",
                     ctx.InputName("Out")));
    auto dout_var = ctx.OutputVar("DOut");
    Out = ctx.Input<framework::Tensor>("Out");
    if (dout_var) {
      dOut = ctx.Output<framework::Tensor>("DOut");
    }

    // extract dx(input)
    auto dx_var = ctx.InputVar("DX");
    PADDLE_ENFORCE_NOT_NULL(
        dx_var, platform::errors::NotFound(
                    "Cannot get input Variable DX, variable name = %s",
                    ctx.InputName("DX")));
    if (dx_var) {
      dX = ctx.Input<framework::Tensor>("DX");
    }

    if (dOut) dOut->mutable_data<T>(Out->dims(), ctx.GetPlace());
    if (ddOut) ddOut->mutable_data<T>(Out->dims(), ctx.GetPlace());

    auto& place = ctx.template device_context<DeviceContext>();

    Functor functor;
    functor(place, Out, ddX, ddOut, dOut, dX);
  }
};

1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637
template <typename DeviceContext, typename Functor>
class PowKernel : public framework::OpKernel<typename Functor::ELEMENT_TYPE> {
 public:
  using T = typename Functor::ELEMENT_TYPE;

  void Compute(const framework::ExecutionContext& context) const override {
    const framework::Tensor* X = nullptr;
    framework::Tensor* Out = nullptr;
    ExtractActivationTensor(context, &X, &Out);
    Out->mutable_data<T>(context.GetPlace());

1638 1639 1640 1641
    auto x = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(X, "Input", "X", "Pow"));
    auto out = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(Out, "Output", "Out", "Pow"));
1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656
    auto* place =
        context.template device_context<DeviceContext>().eigen_device();
    Functor functor;
    auto attrs = functor.GetAttrs();
    for (auto& attr : attrs) {
      *attr.second = context.Attr<float>(attr.first);
    }
    // get FactorTensor
    auto* factor_tensor = context.HasInput("FactorTensor")
                              ? context.Input<framework::Tensor>("FactorTensor")
                              : nullptr;
    if (factor_tensor) {
      auto* factor_data = factor_tensor->data<float>();
      framework::Tensor cpu_factor_tensor;
      if (platform::is_gpu_place(factor_tensor->place())) {
1657 1658
        framework::TensorCopySync(*factor_tensor, platform::CPUPlace(),
                                  &cpu_factor_tensor);
1659 1660 1661 1662
        factor_data = cpu_factor_tensor.data<float>();
      }
      auto factor =
          std::vector<float>(factor_data, factor_data + factor_tensor->numel());
1663 1664 1665 1666 1667
      PADDLE_ENFORCE_EQ(
          factor.size(), 1,
          platform::errors::InvalidArgument(
              "The shape of factor(tensor) must be [1] rather than %d",
              factor.size()));
1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687
      for (auto& attr : attrs) {
        *attr.second = factor[0];
      }
    }
    functor(*place, x, out);
  }
};

template <typename DeviceContext, typename Functor>
class PowGradKernel
    : public framework::OpKernel<typename Functor::ELEMENT_TYPE> {
 public:
  using T = typename Functor::ELEMENT_TYPE;
  void Compute(const framework::ExecutionContext& context) const override {
    const framework::Tensor *X, *Out, *dOut;
    framework::Tensor* dX = nullptr;
    X = Out = dOut = nullptr;
    ExtractActivationGradTensor<Functor::FwdDeps()>(context, &X, &Out, &dOut,
                                                    &dX);
    dX->mutable_data<T>(context.GetPlace());
1688 1689 1690 1691 1692 1693 1694 1695
    auto dout = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(dOut, "Input", "Out@GRAD", "PowGrad"));
    auto out = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(Out, "Input", "Out", "PowGrad"));
    auto dx = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(dX, "Output", "X@GRAD", "PowGrad"));
    auto x = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(X, "Input", "X", "PowGrad"));
1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
    auto* place =
        context.template device_context<DeviceContext>().eigen_device();
    Functor functor;
    auto attrs = functor.GetAttrs();
    for (auto& attr : attrs) {
      *attr.second = context.Attr<float>(attr.first);
    }
    // get FactorTensor
    auto* factor_tensor =
        context.HasInput("FactorTensor")
            ? context.Input<framework::LoDTensor>("FactorTensor")
            : nullptr;
    if (factor_tensor) {
      auto* factor_data = factor_tensor->data<float>();
      framework::Tensor cpu_factor_tensor;
      if (platform::is_gpu_place(factor_tensor->place())) {
1712 1713
        framework::TensorCopySync(*factor_tensor, platform::CPUPlace(),
                                  &cpu_factor_tensor);
1714 1715 1716 1717
        factor_data = cpu_factor_tensor.data<float>();
      }
      auto factor =
          std::vector<float>(factor_data, factor_data + factor_tensor->numel());
1718 1719 1720 1721 1722
      PADDLE_ENFORCE_EQ(
          factor.size(), 1,
          platform::errors::InvalidArgument(
              "The shape of factor(tensor) must be [1] rather than %d",
              factor.size()));
1723 1724 1725 1726 1727 1728 1729
      for (auto& attr : attrs) {
        *attr.second = factor[0];
      }
    }
    functor(*place, x, out, dout, dx);
  }
};
1730

W
wangzhen38 已提交
1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753
template <typename DeviceContext, typename T>
class LogitGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* x = context.Input<framework::Tensor>("X");
    auto* dout =
        context.Input<framework::Tensor>(framework::GradVarName("Out"));
    auto* dx = context.Output<framework::Tensor>(framework::GradVarName("X"));
    auto eps = context.Attr<float>("eps");
    dx->mutable_data<T>(dout->place());

    auto eigen_x = framework::EigenVector<T>::Flatten(*x);
    auto eigen_dout = framework::EigenVector<T>::Flatten(*dout);
    auto eigen_dx = framework::EigenVector<T>::Flatten(*dx);
    auto& place =
        *context.template device_context<DeviceContext>().eigen_device();
    auto eigen_p = framework::EigenVector<T>::Flatten(*x);

    LogitGradFunctor<T> functor;
    functor(place, eigen_x, eigen_dout, eigen_dx, eigen_p, eps);
  }
};

1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780
template <typename T>
struct LogGradGradFunctor : public BaseActivationFunctor<T> {
  template <typename Device>
  void operator()(const Device& dev, const framework::Tensor* X,
                  const framework::Tensor* ddX, framework::Tensor* ddOut,
                  const framework::Tensor* dOut, framework::Tensor* dX) const {
    auto* d = dev.eigen_device();
    auto ddx = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(ddX, "Input", "DDX", "LogGradGrad"));
    auto x = framework::EigenVector<T>::Flatten(
        GET_DATA_SAFELY(X, "Input", "X", "LogGradGrad"));
    // ddout = ddx / x; dx = -(dout / x) * (ddx / x)
    // calculate dx first, so ddout can inplace ddx
    if (dX) {
      auto dout = framework::EigenVector<T>::Flatten(
          GET_DATA_SAFELY(dOut, "Output", "DOut", "LogGradGrad"));
      auto dx = framework::EigenVector<T>::Flatten(
          GET_DATA_SAFELY(dX, "Output", "DX", "LogGradGrad"));
      dx.device(*d) = dout * static_cast<T>(-1) * ddx / (x * x);
    }
    if (ddOut) {
      auto ddout = framework::EigenVector<T>::Flatten(
          GET_DATA_SAFELY(ddOut, "Output", "DDOut", "LogGradGrad"));
      ddout.device(*d) = ddx * static_cast<T>(1) / x;
    }
  }

1781
  static constexpr ActBwdOpFwdDeps FwdDeps() { return ActBwdOpFwdDeps::kDepX; }
1782 1783
};

Q
qijun 已提交
1784 1785
}  // namespace operators
}  // namespace paddle
1786

Y
YuanRisheng 已提交
1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804
#define FOR_EACH_ACTIVATION_OP(__macro)                                      \
  __macro(logsigmoid, LogSigmoid, LogSigmoidFunctor, LogSigmoidGradFunctor); \
  __macro(ceil, Ceil, CeilFunctor, ZeroGradFunctor);                         \
  __macro(floor, Floor, FloorFunctor, ZeroGradFunctor);                      \
  __macro(round, Round, RoundFunctor, ZeroGradFunctor);                      \
  __macro(reciprocal, Reciprocal, ReciprocalFunctor, ReciprocalGradFunctor); \
  __macro(log1p, Log1p, Log1pFunctor, Log1pGradFunctor);                     \
  __macro(log2, Log2, Log2Functor, Log2GradFunctor);                         \
  __macro(log10, Log10, Log10Functor, Log10GradFunctor);                     \
  __macro(soft_relu, SoftRelu, SoftReluFunctor, SoftReluGradFunctor);        \
  __macro(stanh, STanh, STanhFunctor, STanhGradFunctor);                     \
  __macro(softplus, Softplus, SoftplusFunctor, SoftplusGradFunctor);         \
  __macro(softsign, Softsign, SoftsignFunctor, SoftsignGradFunctor);         \
  __macro(relu6, Relu6, Relu6Functor, Relu6GradFunctor);                     \
  __macro(hard_sigmoid, HardSigmoid, HardSigmoidFunctor,                     \
          HardSigmoidGradFunctor);                                           \
  __macro(swish, Swish, SwishFunctor, SwishGradFunctor);                     \
  __macro(mish, Mish, MishFunctor, MishGradFunctor);                         \
H
huangjun12 已提交
1805
  __macro(hard_swish, HardSwish, HardSwishFunctor, HardSwishGradFunctor);