test_KmaxSeqScore.cpp 5.2 KB
Newer Older
C
caoying03 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <gtest/gtest.h>
16
#include <algorithm>
C
caoying03 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
#include <string>
#include <vector>
#include "ModelConfig.pb.h"
#include "paddle/gserver/layers/DataLayer.h"
#include "paddle/trainer/Trainer.h"
#include "paddle/utils/GlobalConstants.h"

#include "LayerGradUtil.h"
#include "paddle/testing/TestUtil.h"

using namespace paddle;  // NOLINT
using namespace std;     // NOLINT

DECLARE_bool(use_gpu);
DECLARE_int32(gpu_id);
DECLARE_bool(thread_local_rand_use_global_seed);

34 35 36 37 38 39 40 41 42 43 44 45 46
vector<int> randSampling(int range, int n) {
  CHECK_GE(range, n);
  vector<int> num(range);
  iota(begin(num), end(num), 0);
  if (range == n) return num;

  random_shuffle(begin(num), end(num));
  num.resize(n);
  return num;
}

void genRandomSeqInfo(vector<int>& seqStartPosition,
                      vector<int>& subSeqStartPosition) {
47
  const int maxSeqNum = 100;
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
  // generate random start position information
  int seqNum = 1 + (rand() % maxSeqNum);
  seqStartPosition.resize(seqNum + 1, 0);
  subSeqStartPosition.resize(1, 0);

  for (int i = 0; i < seqNum; ++i) {
    int subSeqLen = 1 + (rand() % maxSeqNum);
    for (int j = 0; j < subSeqLen; ++j)
      subSeqStartPosition.push_back(subSeqStartPosition.back() + subSeqLen);
    seqStartPosition[i + 1] = subSeqStartPosition.back();
  }
}

void genRandomGroundTruth(real* values,
                          vector<vector<int>>& groundTruth,
63
                          vector<int>& startPos,
64
                          size_t beamSize) {
65 66 67 68 69 70 71 72
  groundTruth.resize(startPos.size() - 1, vector<int>(beamSize, -1));
  for (size_t i = 0; i < startPos.size() - 1; ++i) {
    int seqLen = startPos[i + 1] - startPos[i];
    vector<int> pos =
        randSampling(seqLen, min(static_cast<int>(beamSize), seqLen));
    for (size_t j = 0; j < pos.size(); ++j) {
      groundTruth[i][j] = pos[j];
      values[startPos[i] + pos[j]] = 1.;
73
    }
74 75
  }
}
76

77 78 79 80 81 82 83 84 85 86
void checkLayerOut(vector<vector<int>> groundTruth,
                   real* layerOut,
                   size_t beamSize) {
  for (size_t i = 0; i < groundTruth.size(); ++i) {
    int begPos = i * beamSize;
    vector<real> tmp(layerOut + begPos, layerOut + begPos + beamSize);
    sort(begin(tmp), end(tmp));
    sort(begin(groundTruth[i]), end(groundTruth[i]));
    for (size_t j = 0; j < beamSize; ++j) CHECK_EQ(tmp[j], groundTruth[i][j]);
  }
87 88
}

C
caoying03 已提交
89
TEST(Layer, kmaxSeqScoreLayer) {
90
  const size_t maxBeamSize = 100;
91
  size_t beamSize = 1 + (rand() % maxBeamSize);
92 93 94 95 96 97 98 99 100

  vector<int> seqStartPosition;
  vector<int> subSeqStartPosition;
  genRandomSeqInfo(seqStartPosition, subSeqStartPosition);
  MatrixPtr inValue =
      Matrix::create(subSeqStartPosition.back(), 1, false, false);

  for (auto hasSubseq : {false, true}) {
    vector<vector<int>> groundTruth;
101
    inValue->randomizeUniform();
102 103
    genRandomGroundTruth(inValue->getData(),
                         groundTruth,
104
                         hasSubseq ? subSeqStartPosition : seqStartPosition,
105 106 107
                         beamSize);

    for (auto useGpu : {false, true}) {
C
caoying03 已提交
108 109
      TestConfig config;
      config.layerConfig.set_type("kmax_seq_score");
110
      config.layerConfig.set_beam_size(beamSize);
111 112 113 114 115 116 117 118 119 120 121

      if (hasSubseq) {
        config.inputDefs.push_back({INPUT_SELF_DEFINE_DATA,
                                    "scores",
                                    inValue,
                                    seqStartPosition,
                                    subSeqStartPosition});
      } else {
        config.inputDefs.push_back(
            {INPUT_SELF_DEFINE_DATA, "scores", inValue, seqStartPosition});
      }
C
caoying03 已提交
122 123 124 125 126 127
      config.layerConfig.add_inputs();

      // data layer initialize
      std::vector<DataLayerPtr> dataLayers;
      LayerMap layerMap;
      vector<Argument> datas;
128 129 130 131 132 133 134 135 136
      initDataLayer(
          config,
          &dataLayers,
          &datas,
          &layerMap,
          "kmax_seq_score",
          100 /* actually this parameter is unused in self-defined input*/,
          false,
          useGpu);
C
caoying03 已提交
137 138 139
      // test layer initialize
      std::vector<ParameterPtr> parameters;
      LayerPtr kmaxSeqScoreLayer;
140
      FLAGS_use_gpu = useGpu;
C
caoying03 已提交
141 142
      initTestLayer(config, &layerMap, &parameters, &kmaxSeqScoreLayer);
      kmaxSeqScoreLayer->forward(PASS_TRAIN);
143 144 145 146 147 148 149

      const MatrixPtr outValue = kmaxSeqScoreLayer->getOutputValue();
      CHECK_EQ(outValue->getHeight(),
               hasSubseq ? subSeqStartPosition.size() - 1
                         : seqStartPosition.size() - 1);
      CHECK_EQ(outValue->getWidth(), beamSize);
      checkLayerOut(groundTruth, outValue->getData(), beamSize);
C
caoying03 已提交
150 151 152 153 154 155 156 157
    }
  }
}

int main(int argc, char** argv) {
  testing::InitGoogleTest(&argc, argv);
  initMain(argc, argv);
  FLAGS_thread_local_rand_use_global_seed = true;
158
  srand((size_t)(time(NULL)));
C
caoying03 已提交
159 160
  return RUN_ALL_TESTS();
}