c_recv_op.cc 3.9 KB
Newer Older
S
sandyhouse 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/collective/c_recv_op.h"
S
sandyhouse 已提交
16
#include <string>
S
sandyhouse 已提交
17 18 19 20 21 22 23 24

namespace paddle {
namespace operators {

class CRecvOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

S
sandyhouse 已提交
25 26 27 28 29 30 31 32 33 34 35 36
  void InferShape(framework::InferShapeContext* ctx) const override {
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "CRecv");
    int peer = ctx->Attrs().Get<int>("peer");
    int ring_id = ctx->Attrs().Get<int>("ring_id");
    PADDLE_ENFORCE_GE(
        peer, 0,
        platform::errors::InvalidArgument(
            "The peer (%d) for c_send_op must be non-negative.", peer));
    PADDLE_ENFORCE_GE(
        ring_id, 0,
        platform::errors::InvalidArgument(
            "The ring_id (%d) for c_send_op must be non-negative.", ring_id));
S
sandyhouse 已提交
37 38 39 40 41 42
    auto out_shape = ctx->Attrs().Get<std::vector<int>>("out_shape");
    PADDLE_ENFORCE_GE(out_shape.size(), 1,
                      platform::errors::InvalidArgument(
                          "The size of the output shape must be greater than 0 "
                          "but the value given is %d.",
                          out_shape.size()));
S
sandyhouse 已提交
43
  }
S
sandyhouse 已提交
44 45 46 47

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
S
sandyhouse 已提交
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
    VLOG(0) << "wow1";
    std::string dtype = ctx.Attr<std::string>("dtype");
    framework::proto::VarType::Type type;
    if (dtype == "fp32") {
      type = framework::proto::VarType::FP32;
    } else if (dtype == "fp64") {
      type = framework::proto::VarType::FP64;
    } else if (dtype == "fp16") {
      type = framework::proto::VarType::FP16;
    } else if (dtype == "int32") {
      type = framework::proto::VarType::INT32;
    } else if (dtype == "int64") {
      type = framework::proto::VarType::INT64;
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Unknown data type %s for c_recv op.", dtype));
    }
    VLOG(0) << "wow2";
    return framework::OpKernelType(type, ctx.GetPlace());
S
sandyhouse 已提交
67
    // OperatorWithKernel::IndicateVarDataType(ctx, "Out"), ctx.GetPlace());
S
sandyhouse 已提交
68 69 70
  }
};

S
sandyhouse 已提交
71
class CRecvOpMaker : public framework::OpProtoAndCheckerMaker {
S
sandyhouse 已提交
72 73
 public:
  void Make() {
S
sandyhouse 已提交
74
    AddOutput("Out", "(Tensor) tensor to receive.");
S
sandyhouse 已提交
75 76 77
    AddAttr<int>("ring_id", "(int default 0) nccl communication ring id.")
        .SetDefault(0);
    AddAttr<int>("peer", "(int default 0) rank id for sender.").SetDefault(0);
S
sandyhouse 已提交
78 79 80 81 82
    AddAttr<std::string>("dtype",
                         "(std::string default fp32) data type of tensor.")
        .SetDefault("fp32");
    AddAttr<std::vector<int>>("out_shape", "shape of the output tensor.")
        .SetDefault(std::vector<int>());
S
sandyhouse 已提交
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
    AddAttr<bool>(
        "use_calc_stream",
        "(bool default false) eject CUDA operations to calculation stream.")
        .SetDefault(false);
    AddComment(R"DOC(
CRecv Operator

Reference: https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/usage/p2p.html#sendrecv
)DOC");
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
namespace plat = paddle::platform;

REGISTER_OP_WITHOUT_GRADIENT(c_recv, ops::CRecvOp, ops::CRecvOpMaker);

REGISTER_OP_CPU_KERNEL(c_recv, ops::CRecvOpCPUKernel<float>,
                       ops::CRecvOpCPUKernel<double>,
                       ops::CRecvOpCPUKernel<int>,
                       ops::CRecvOpCPUKernel<int64_t>,
                       ops::CRecvOpCPUKernel<plat::float16>);